精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.
分析:(1)根据题意,用特殊值法,令x=y=0,可得f(0+0)=f(0)+f(0),计算可得答案;
(2)在f(x+y)=f(x)+f(y)中,令y=-x,可得f(x-x)=f(x)+f(-x),进而由(1)的结论,可得f(-x)=-f(x),考虑f(x)的定义域,可得答案;
(3)设x1,x2∈[-1,1],且x1<x2,结合f(x+y)=f(x)+f(y)可得f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1),又由题意,x>0时,有f(x)>0,可得f(x2)>f(x1),即可得证明.
解答:解:(1)根据题意,在f(x+y)=f(x)+f(y)中,
令x=y=0,则f(0+0)=f(0)+f(0),
∴f(0)=0.
(2)令y=-x,则f(x-x)=f(x)+f(-x),即f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x),
又x∈[-1,1],其定义域关于原点对称,
∴f(x)是奇函数.
(3)设x1,x2∈[-1,1],且x1<x2,则x2-x1>0.
∵x>0时,有f(x)>0,∴f(x2-x1)>0,
又∵f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1),
∴f(x2)-f(x1)>0,即f(x2)>f(x1),
即f(x1)<f(x2),
∴函数f(x)在[-1,1]上是增函数.
点评:本题考查抽象函数的应用,涉及函数奇偶性、单调性的判断,解此类题目,注意特殊值法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案