精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,若4Sn=(2n-1)an+1+1(n∈N),且a1=1.
(1)求证:数列{an}为等差数列;
(2)设bn=
1
an
Sn
,数列{bn}的前n项和为Tn,证明:Tn
3
2
(n∈N).
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得4an=(2n-1)an+1-(2n-3)an,从而
an+1
an
=
2n+1
2n-1
,由此能证明数列{an}是首项为1,公差为2的等差数列.
(2)由an=2n-1,Sn=n+
n(n-1)
2
×2
=n2,得bn=
1
an
Sn
=
2
2n(2n-1)
2
2n(2n-2)
=
1
2n-2
-
1
2n
,由此利用裂项求和法能证明Tn
3
2
(n∈N).
解答: (1)证明:∵4Sn=(2n-1)an+1+1,①
∴n≥2时,4Sn-1=(2n-3)an+1,②
①-②,得4an=(2n-1)an+1-(2n-3)an,n≥2
∴(2n+1)an=(2n-1)an+1
an+1
an
=
2n+1
2n-1

∴an=a1×
a2
a1
×
a3
a2
×…×
an
an-1
=1×
3
1
×
5
3
×…×
2n-1
2n-3
=2n-1,
∴an-an-1=(2n-1)-(2n-3)=2,
∴数列{an}是首项为1,公差为2的等差数列.
(2)解:∵数列{an}是首项为1,公差为2的等差数列,
∴an=2n-1,Sn=n+
n(n-1)
2
×2
=n2
∴bn=
1
an
Sn
=
1
(2n-1)n
=
2
2n(2n-1)
2
2n(2n-2)
=
1
2n-2
-
1
2n
,n≥2
∴Tn<(1+
1
2
-
1
4
+
1
4
-
1
6
+…+
1
2n-2
-
1
2n

=
3
2
-
1
2n
3
2

∴Tn
3
2
(n∈N).
点评:本题考查数列{an}为等差数列的证明,考查不等式的证明,解题时要认真审题,注意累乘法和裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=tan
x
2
+
16-x2
,则函数的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算
2i
1-i
的结果是(  )
A、-1+iB、-1-i
C、1+iD、1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an+1=nan+n-1,a1=1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若正三棱锥的棱长为6cm,求它的内切球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在高中数学课本中我们见过许多的“信息技术应用”,我们可以利用几何画板软件的拖动、动画及计算等功能来研究许多数学问题.比如:在平面内做一条线段KL,以定点A为圆心,以|KL|为半径作一圆,在圆内取一定点F,在圆上取动点B,作线段BF的中垂线与圆A的半径AB交于点P,当点B在圆上运动时,就会发现点P的运动轨迹.
(Ⅰ)你能猜出点P的轨迹是什么曲线吗?请说明理由;若|KL|=6,|AF|=4,以线段AF的中点O为原点,以直线AF为x轴,建立平面直角坐标系,试求点P的轨迹方程;
(Ⅱ)在(Ⅰ)的条件下,过点A作直线l与点P的轨迹交于两点M、N,试求线段MN的中点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n≥2且n∈N*,对n2进行如下方式的“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么361的“分拆”所得的数的中位数是(  )
A、19B、21C、29D、361

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为了解高三女生的身高状况,随机抽取了100名女生,按身高分组得到频率分布表为:
编号分组频数频率 
A组[150,155)50.050 
B组[155,160)m0.350 
C组[160,165)30
D组[165,170)x0.200 
E组[170,175)100.100 
(Ⅰ)求表中的m,n,x的值,并画出频率公布直方图;
(Ⅱ)由于该校要组成女子篮球队,决定在C、D、E组中用分层抽样方法抽取6人,求各组抽取的人数;
(Ⅲ)在(Ⅱ)中被抽取的6人中,随机抽取2名队员,求D组至少有一名学生被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=2an+1
(1)求数列{an}的通项公式;
(2)若{bn}的前n项和为Tn,且Tn+
2n
an+1
=c(c为常数),证明b2+b4+…+b2n
4
9

查看答案和解析>>

同步练习册答案