精英家教网 > 高中数学 > 题目详情

函数f(x)=cos(sinx)(x∈R)的最小正周期T及最小值m分别为


  1. A.
    T=π,m=1
  2. B.
    T=2π,m=cos1
  3. C.
    T=π,m=cos1
  4. D.
    T=2π,m=-1
C
分析:利用诱导公式求得f(x+π)=f(x),故函数的周期为π.由于-1≤sinx≤1,故cos1≤cos(sinx)≤1,可得
函数的最小值为 cos1,从而得到结论.
解答:∵函数f(x)=cos(sinx)(x∈R),
∴函数f(x+π)=cos[sin(x+π)]=cos[sin(-x)]=cos(-sinx)=cos(sinx)=f(x),
故函数的周期为π,故排除B、D.
由于-1≤sinx≤1,故cos1≤cos(sinx)≤1,故函数的最小值为 cos1,
故选C.
点评:本题主要考查函数的周期性的定义,诱导公式、余弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
cos(0<x<π)
g(x)(-π<x<0)
是奇函数,则函数g(x)的解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+?)满足f(x)≤f(1)对x∈R恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cosπx与函数g(x)=|log2|x-1||的图象所有交点的横坐标之和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(2x+θ)+
3
sin(2x+θ)是偶函数,则θ=
 

查看答案和解析>>

同步练习册答案