ÒÑÖªÒ»ÁзÇÁãÏòÁ¿
an
Âú×㣺
a1
=(x1£¬y1)£¬
an
=(xn£¬yn)=
1
2
(xn-1-yn-1£¬xn-1+yn-1)(n¡Ý2)
£®
£¨¢ñ£©Ö¤Ã÷£º{|
an
|}
ÊǵȱÈÊýÁУ»
£¨¢ò£©ÇóÏòÁ¿
a
n-1
Óë
a
n
µÄ¼Ð½Ç(n¡Ý2)
£»
£¨¢ó£©Éè
a
1
=(1£¬2)£¬°Ñ
a1
£¬
a2
£¬¡­£¬
an
£¬¡­ÖÐËùÓÐÓë
a1
¹²ÏßµÄÏòÁ¿°´Ô­À´µÄ˳ÐòÅųÉ
Ò»ÁУ¬¼ÇΪ
b1
£¬
b2
£¬¡­£¬
.
bn
£¬¡­£¬Áî
OB
n
=
b1
+
b2
+¡­+
bn
£¬0
Ϊ×ø±êÔ­µã£¬ÇóµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®
£¨×¢£ºÈôµãBn×ø±êΪ(tn£¬sn)£¬ÇÒ
lim
n¡ú¡Þ
tn=t£¬
lim
n¡ú¡Þ
sn=s£¬Ôò³ÆµãB(t£¬s)ΪµãÁÐ{Bn}
µÄ¼«Ï޵㣮£©
·ÖÎö£º£¨I£©ÓÉÓÚ|
an
|=
1
2
(xn-1-yn-1)2+(xn-1+yn-1)2
µÃ³ö
|
an
|
|
a
n-1
|
=
2
2
Ϊ³£Êý£¬´Ó¶øÖ¤µÃ{|
an
|}
ÊǵȱÈÊýÁУ®
£¨II£©ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýµÃ³ö
a
n-1
a
n
=(xn-1£¬yn-1)•
1
2
(xn-1-yn-1£¬xn-1+yn-1)
´Ó¶øÓУºcos£¼
a
n-1
£¬
a
n
£¾=
a
n-1
a
n
|
a
n-1
||
a
n
|
=
1
2
|
a
n-1
|2
|
a
n-1
|•
2
2
|
a
n-1
|
=
2
2
£¬¼´¿ÉÇóµÃ
a
n-1
Óë
a
n
µÄ¼Ð½Ç£»
£¨III£©ÏÈÀûÓÃÊýѧ¹éÄÉ·¨Ò×Ö¤
b
n
=
a
4n-3
³ÉÁ¢´Ó¶øµÃ³ö£º
b
n
=(-
1
4
)n-1(x1£¬y1)
£®½áºÏµÈ±ÈÊýÁеÄÇóµÃ¹«Ê½¼°ÊýÁеļ«ÏÞ¼´¿ÉÇóµÃµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®
½â´ð£º½â£º£¨I£©|
an
|=
1
2
(xn-1-yn-1)2+(xn-1+yn-1)2

=
2
2
x
2
n-1
+
y
2
n-1
=
2
2
|
a
n-1
|£¬(n¡Ý2)
£¬Ê×Ïî|
a1
|=
x
2
1
+
y
2
1
¡Ù0£¬
|
an
|
|
a
n-1
|
=
2
2
Ϊ³£Êý£¬¡à{|
an
|}
ÊǵȱÈÊýÁУ®
£¨II£©
a
n-1
a
n
=(xn-1£¬yn-1)•
1
2
(xn-1-yn-1£¬xn-1+yn-1)
=
1
2
(
x
2
n-1
+
y
2
n-1
)=
1
2
|
a
n-1
|2
£¬cos£¼
a
n-1
£¬
a
n
£¾=
a
n-1
a
n
|
a
n-1
||
a
n
|
=
1
2
|
a
n-1
|2
|
a
n-1
|•
2
2
|
a
n-1
|
=
2
2
£¬¡à
a
n-1
Óë
a
n
µÄ¼Ð½ÇΪ
¦Ð
4
£®
£¨III£©
a1
=(x1£¬y1)£¬
a2
=
1
2
(x1-y1£¬x1+y1)
£¬
a3
=
1
4
(-2y1£¬2x1)=
1
2
(-y1£¬x1)£¬
a4
=
1
4
(-y1-x1£¬-y1+x1)
£¬
a5
=
1
8
(-2x1£¬-2y1)=-
1
4
(x1£¬y1)
£¬¡à
a1
¡Î
a5
¡Î
a9
¡Î
Ò»°ãµØ£¬
b1
=
a1
£¬
b2
=
a5
£¬£¬
bn
=
a
4n-3
£¬
ÓÃÊýѧ¹éÄÉ·¨Ò×Ö¤
b
n
=
a
4n-3
³ÉÁ¢¡à
b
n
=(-
1
4
)n-1(x1£¬y1)
£®
Éè
OBn
=(tn£¬sn)Ôòtn=[1+(-
1
4
)+(-
1
4
)
2
+¡­+(-
1
4
)
n-1
]x1
=
1-(-
1
4
)
n
1-(-
1
4
)
=
4
5
[1-(-
1
4
)n]£¬
lim
n¡ú¡Þ
tn=
4
5
£»
sn=[1+(-
1
4
)+(-
1
4
)
2
+¡­+(-
1
4
)
n-1
]y1
=
1-(-
1
4
)
n
1-(-
1
4
)
•2=
8
5
[1-(-
1
4
)n]£¬
lim
n¡ú¡Þ
sn=
8
5
£¬
¡à¼«ÏÞµãBµÄ×ø±êΪ(
4
5
£¬
8
5
)
£®
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁеÄÐÔÖÊ¡¢ÊýÁеļ«ÏÞ¡¢ÏòÁ¿µÄÔËËãµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦Óëת»¯Ë¼Ï룮ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»ÁзÇÁãÏòÁ¿
an
£¬n¡ÊN*£¬Âú×㣺
a1
=£¨10£¬-5£©£¬
an
=(xn£¬yn)=k(xn-1-yn-1£¬xn-1+yn-1)
£¬£¨n32 £©£®£¬ÆäÖÐkÊÇ·ÇÁã³£Êý£®
£¨1£©ÇóÊýÁÐ{|
an
|}ÊǵÄͨÏʽ£»
£¨2£©ÇóÏòÁ¿
an-1
Óë
an
µÄ¼Ð½Ç£»£¨n¡Ý2£©£»
£¨3£©µ±k=
1
2
ʱ£¬°Ñ
a1
£¬
a2
£¬¡­£¬
an
£¬¡­ÖÐËùÓÐÓë
a1
¹²ÏßµÄÏòÁ¿°´Ô­À´µÄ˳ÐòÅųÉÒ»ÁУ¬¼ÇΪ
b1
£¬
b2
£¬¡­£¬
bn
£¬¡­£¬Áî
OBn
=
b1
+
b2
+¡­+
bn
£¬OΪ×ø±êÔ­µã£¬ÇóµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®£¨×¢£ºÈôµã×ø±êΪ£¨tn£¬sn£©£¬ÇÒ
lim
n¡ú¡Þ
tn=t
£¬
lim
n¡ú¡Þ
sn=s
£¬Ôò³ÆµãB£¨t£¬s£©ÎªµãÁеļ«Ï޵㣮£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÎ«·»Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÒ»ÁзÇÁãÏòÁ¿
an
Âú×㣺
a1
=(x1£¬y1)£¬
an
=(xn£¬yn)=
1
2
(xn-1-yn-1£¬xn-1+yn-1)(n¡Ý2)
£®
£¨¢ñ£©Ö¤Ã÷£º{|
an
|}
ÊǵȱÈÊýÁУ»
£¨¢ò£©ÇóÏòÁ¿
a
n-1
Óë
a
n
µÄ¼Ð½Ç(n¡Ý2)
£»
£¨¢ó£©Éè
a
1
=(1£¬2)£¬°Ñ
a1
£¬
a2
£¬¡­£¬
an
£¬¡­ÖÐËùÓÐÓë
a1
¹²ÏßµÄÏòÁ¿°´Ô­À´µÄ˳ÐòÅųÉ
Ò»ÁУ¬¼ÇΪ
b1
£¬
b2
£¬¡­£¬
.
bn
£¬¡­£¬Áî
OB
n
=
b1
+
b2
+¡­+
bn
£¬0
Ϊ×ø±êÔ­µã£¬ÇóµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®
£¨×¢£ºÈôµãBn×ø±êΪ(tn£¬sn)£¬ÇÒ
lim
n¡ú¡Þ
tn=t£¬
lim
n¡ú¡Þ
sn=s£¬Ôò³ÆµãB(t£¬s)ΪµãÁÐ{Bn}
µÄ¼«Ï޵㣮£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºº¼ÖÝһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÒ»ÁзÇÁãÏòÁ¿
an
£¬n¡ÊN*£¬Âú×㣺
a1
=£¨10£¬-5£©£¬
an
=(xn£¬yn)=k(xn-1-yn-1£¬xn-1+yn-1)
£¬£¨n32 £©£®£¬ÆäÖÐkÊÇ·ÇÁã³£Êý£®
£¨1£©ÇóÊýÁÐ{|
an
|}ÊǵÄͨÏʽ£»
£¨2£©ÇóÏòÁ¿
an-1
Óë
an
µÄ¼Ð½Ç£»£¨n¡Ý2£©£»
£¨3£©µ±k=
1
2
ʱ£¬°Ñ
a1
£¬
a2
£¬¡­£¬
an
£¬¡­ÖÐËùÓÐÓë
a1
¹²ÏßµÄÏòÁ¿°´Ô­À´µÄ˳ÐòÅųÉÒ»ÁУ¬¼ÇΪ
b1
£¬
b2
£¬¡­£¬
bn
£¬¡­£¬Áî
OBn
=
b1
+
b2
+¡­+
bn
£¬OΪ×ø±êÔ­µã£¬ÇóµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®£¨×¢£ºÈôµã×ø±êΪ£¨tn£¬sn£©£¬ÇÒ
lim
n¡ú¡Þ
tn=t
£¬
lim
n¡ú¡Þ
sn=s
£¬Ôò³ÆµãB£¨t£¬s£©ÎªµãÁеļ«Ï޵㣮£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»ÁзÇÁãÏòÁ¿anÂú×ã:a1=(x1,y1),an=(xn,yn)=(xn-1-yn-1,xn-1+yn-1)(n¡Ý2).

(1)Ö¤Ã÷{|an|}ÊǵȱÈÊýÁÐ;

(2)Éè¦Èn=¡´an-1,an¡µ,bn=2n¦Èn-1,Sn=b1+b2+b3+¡­+bn,ÇóSn.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸