精英家教网 > 高中数学 > 题目详情
2.sin70°cos10°+cos110°sin10°=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 由条件利用诱导公式、两角和差的余弦公式,化简所给的三角函数式,可得结果.

解答 解:sin70°cos10°+cos110°sin10°=sin70°cos10°-cos70°sin10°=sin(70°-10°)
=sin60°=$\frac{\sqrt{3}}{2}$,
故选:B.

点评 本题主要考查应用诱导公式、两角和差的余弦公式化简三角函数式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.对定义域分别为D1,D2的函数y=f(x),y=g(x),规定:函数h(x)=$\left\{\begin{array}{l}{f(x)•g(x),x∈{D}_{1}且x∈{D}_{2}}\\{f(x),x∈{D}_{1}且x∉{D}_{2}}\\{g(x),x∉{D}_{1}且x∈{D}_{2}}\end{array}\right.$.若f(x)=x-2(x≥1),g(x)=-2x+3(x≤2),则h(x)的解析式h(x)=$\left\{\begin{array}{l}{(x-2)(-2x+3),1≤x≤2}\\{x-2,x>2}\\{-2x+3,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在(0,+∞)上的函数f(x)满足:?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若圆C1的方程是x2+y2-4x-4y+7=0,圆C2的方程为x2+y2-4x-10y+13=0,则两圆的公切线有(  )
A.2条B.3条C.4条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(x)=(x-a)(x+4)为偶函数,则实数a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a∈R,则“a2>a”是“a>1”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A={x|2a≤x≤a+3},B={x|x2-6x+5>0}.
(1)若A∩B=∅,求a的取值范围.
(2)是否存在实数a,使得A∪B=R,若存在,求出a的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1)、B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足D(PO)≤1的点P所组成的集合,
点集A={(x,y)|-1≤x≤1,-1≤y≤1},
求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图是一个判断是否存在以a,b,6为三边长的钝角三角形的框图(其中a和b是不超过6的正实数).

(1)请你将判断框中的内容补充完整;
(2)如果a和b是通过分别抛掷两个均匀的般子而得到的,求形成钝角三角形的概率;
(3)如果a和b都是[0,6]中均匀分布的随机数且相互独立,求形成钝角三角形的概率.

查看答案和解析>>

同步练习册答案