精英家教网 > 高中数学 > 题目详情
14.已知A={x|2a≤x≤a+3},B={x|x2-6x+5>0}.
(1)若A∩B=∅,求a的取值范围.
(2)是否存在实数a,使得A∪B=R,若存在,求出a的取值集合,若不存在,说明理由.

分析 (1)化简集合B,分类讨论,利用A∩B=∅,求a的取值范围;
(2)根据条件A∪B=R,确定不等式端点之间的关系进行求解即可.

解答 解:B={x|(x-1)(x-5)>0}={x|x<1或x>5},…(1分)
(1)当A=∅时,2a>a+3,∴a>3,…(2分)
当A≠∅时,$\left\{{\begin{array}{l}{2a≤a+3}\\ \begin{array}{l}2a≥1\\ a+3≤5\end{array}\end{array}}\right.$,∴$\frac{1}{2}≤a≤2$.…(5分)
综上,a的取值范围为$[{\frac{1}{2},2}]∪({3,+∞})$.…(6分)
(2)假设存在a使A∪B=R,则$\left\{\begin{array}{l}{2a≤1}\\{a+3≥5}\end{array}\right.$,…(8分)
∴a∈∅,∴不存在a使A∪B=R. …(10分)

点评 本题主要考查集合的基本运算,根据不等式的解法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,E是棱CC1上的点,且$CE=\frac{1}{4}C{C_1}$.     
(1)求三棱锥C-BED的体积;
(2)求直线CC1与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足条件$\left\{\begin{array}{l}{x≥0}\\{y≥x}\\{2x+y-6≥0}\end{array}\right.$,则z=x-2y的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.sin70°cos10°+cos110°sin10°=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知tan α=2,则$\frac{sin2α+cos2(π-α)}{1+cos2α}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.三棱锥P-ABC的四个顶点都在半径为5的球面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为(  )
A.7B.7.5C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OC}$与$\overrightarrow{OA}$的夹角为30°,|$\overrightarrow{OC}$|=5,则$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.(用$\overrightarrow{OA}和\overrightarrow{OB}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|ax2-3x+2=0,a∈R},若集合A中至多有一个元素,则实数a的值是(  )
A.a=0B.a≥$\frac{9}{8}$C.a=0或a≥$\frac{9}{8}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=$\frac{{x}^{3}}{{e}^{|x|}}$,则其图象为(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案