精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cosθ,sinθ),
b
=(cos2θ,sin2θ),
c
=(-1,0),
d
=(0,1).
(1)求证:
a
⊥(
b
+
c
)
;     (2)设f(θ)=
a
•(
b
-
d
)
,求f(θ)的值域.
(1)∵
a
b
=cosθcos2θ+sinθsin2θ=cosθ
…(2分)
又∵
a
c
=-cosθ
…(4分)
a
•(
b
+
c
)=cosθ-cosθ=0

a
⊥(
b
+
c
)
…(6分)
(2)f(θ)=
a
b
-
a
d
=cosθ-sinθ=
2
cos(θ+
π
4
)…(10分)
所以f(θ)的值域为[-
2
2
]…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求证:
a
b

(2)若存在不等于0的实数k和t,使
x
=
a
+(t2+3)
b
y
=(-k
a
+t
b
),满足
x
y
,试求此时
k+t2
t
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
a
b
,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),则|
a
+
b
|最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),则|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步练习册答案