精英家教网 > 高中数学 > 题目详情

是直线,是平面,,向量上,向量上,,则所成二面角中较小的一个余弦值为        .

解析试题分析:根据题意可知,由于,且有向量上,向量上,如果,那么结合向量数量积公式可知,,故答案为
考点:二面角的大小
点评:解决的管家式利用平面法向量以及二面角的求解的方法可知结论,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

是两条不同的直线,是两个不同的平面,则下列正确命题的序号是   .
①.若  , 则   ;      ②.若,则   
③.若,则;      ④.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在三棱锥中,,且平面,过作截面分别交,且二面角的大小为,则截面面积的最小值为      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是两条不同的直线,是两个不同的平面,则下列正确命题的序号
     
①.若  , 则   ;      ②.若,则   
③. 若  ,则   ;      ④.若   ,,则  

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知二面角α–l-β的平面角为45°,有两条异面直线a,b分别垂直于平面,则异面直线所成角的大小是                

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如右图已知每条棱长都为3的四棱柱ABCD-ABCD中,底面是菱形,BAD=60°,D B⊥平面ABCD,长为2的线段MN的一个端点M在DD上运动,另一个端点N在底面ABCD上运动,则MN中点P的轨迹与此四棱柱的面所围成的几何体的体积为 _____________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,已知六棱锥PABCDEF的底面是正六边形,平面ABC,给出下列结论:①;②平面平面PBC;③直线平面PAE;④;⑤直线PD与平面PAB所成角的余弦值为
其中正确的有                (把所有正确的序号都填上)。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,矩形与矩形所在的平面互相垂直,将沿翻折,翻折后的点E恰与BC上的点P重合.设,则当__时,有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;②经过空间一点一定可作一平面与两异面直线都平行;③已知平面,直线,若,则;④四个侧面两两全等的四棱柱为直四棱柱;⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.其中正确命题的序号是      

查看答案和解析>>

同步练习册答案