精英家教网 > 高中数学 > 题目详情

设曲线()在点(1,1)处的切线与x轴的交点的横坐标为,则=    

 

【答案】

【解析】

试题分析:f′(x)=(n+1)xn

k=f′(x)=n+1,

点P(1,1)处的切线方程为:y-1=(n+1)(x-1),

令y=0得,x=1-=

即xn=

∴x1×x2×…×x2011×xn=×=

考点:本题主要考查导数的几何意义;数列“累乘法”.

点评:利用导数求曲线上某点的切线方程,解题时要认真审题,仔细解答.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线c1,曲线c1与y轴交于点A(0,m),过坐标原点O作曲线c1的切线,切点为B(n,t)(n>0)设曲线c1在点A、B之间的曲线段与OA、OB所围成图形的面积为S,求S的值;
(2)当x,y∈N*且x<y时,证明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在曲线C:y=
1
x
(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=f(
an-1
)
(n≥2),数列{bn}满足bn=
1
an
-
k
3
,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中数学 来源: 题型:

定义F(x,y)=(1+x)y,x,y∈(0,+∞),令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C,曲线C与y轴交于点A(0,m),过坐标原点O向曲线C作切线,切点为B(n,t)(n>0),设曲线C在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O作曲线C1的切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值.
(2)当x,y∈N*且x<y时,证明F(x,y)>F(y,x);
(3)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C2,若存在实数b使得曲线C2在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•汕头二模)定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值;
(Ⅱ)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C2,若存在实数b使得曲线C2在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(Ⅲ)当x,y∈N*且x<y时,证明F(x,y)>F(y,x).

查看答案和解析>>

同步练习册答案