精英家教网 > 高中数学 > 题目详情
函数f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
,若f(a)=f(b)=f(c)且a,b,c互不相等,则 abc 的取值范围是(  )
分析:先画出分段函数的图象,根据图象确定字母a、b、c的取值范围,再利用函数解析式证明ab=1,最后数形结合写出其取值范围即可
解答:解:函数f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
的图象如图:精英家教网
∵f(a)=f(b)=f(c)且a,b,c互不相等
∴a∈(0,1),b∈(1,10),c∈(10,12)
∴由f(a)=f(b)得|lga|=|lgb|,即-lga=lgb,即ab=1
∴abc=c
由函数图象得abc 的取值范围是(10,12)
故选B
点评:本题考查了分段函数图象的画法及其应用,对数函数及一次函数图象的画法,数形结合求参数的取值范围,画出分段函数图象并数形结合解决问题是解决本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=lg(x2-5x+4)+x
32
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(cos2
x
2
-sin2
x
2
)
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)若函数f(x)=lg(x+
x2+a
)
为奇函数,则a=1;
(2)函数f(x)=|1+sinx+cosx|的周期T=2π;
(3)方程lgx=sinx有且只有三个实数根;
(4)对于函数f(x)=
x
,若0<x1<x2,则f(
x1+x2
2
)<
f(x1)+f(x2)
2

以上命题为真命题的是
(1)(2)(3)
(1)(2)(3)
.(将所有真命题的序号填在题中的横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(x+1)+
4-x2
的定义域是
{x|-1<x≤2}
{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(ax2-ax+
1a
)
值域为R,则实数a的取值范围是
[2,+∞)
[2,+∞)

查看答案和解析>>

同步练习册答案