精英家教网 > 高中数学 > 题目详情
已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是
3
3
3
3
分析:根据△ABF2是正三角形,且直线AB与椭圆长轴垂直,得到F2F1是正三角形△ABF2的高,∠AF2F1=30°.在Rt△AF2F1中,设|AF1|=m,可得
|AF1|
|AF2|
=
1
2
,所以|AF2|=2m,用勾股定理算出|F1F2|=
3
m,得到椭圆的长轴2a=|AF1|+|AF2|=3m,焦距2c=
3
m,所以椭圆的离心率为e=
2c
2a
=
3
3
解答:解:∵△ABF2是正三角形,
∴∠AF2B=60°,
∵直线AB与椭圆长轴垂直,
∴F2F1是正三角形△ABF2的高,∠AF2F1=
1
2
×60°=30°,
Rt△AF2F1中,设|AF1|=m,sin30°=
|AF1|
|AF2|
=
1
2

∴|AF2|=2m,|F1F2|=
|AF2|2-|AF1|2
=
3
m

因此,椭圆的长轴2a=|AF1|+|AF2|=3m,焦距2c=
3
m
∴椭圆的离心率为e=
c
a
=
2c
2a
=
3
3

故答案为:
3
3
点评:本题给出椭圆过焦点垂直于长轴的弦和另一焦点构成直角三角形,求椭圆的离心率.着重考查了椭圆的基本概念和简单几何性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案