精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面为一直角梯形,其中底面的中点.
(1)试用表示,并判断直线与平面的位置关系;
(2)若平面,求异面直线所成角的余弦值.
解:设,建立如图所示空间直角坐标系,
,
. ……(2分)
(1)
所以,  ……(5分)
平面平面. ……(7分)
(2)平面,即.
,即. ……(10分)
, ……(11分)

所以异面直线所成角的余弦值为. ……(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在边长为的正方体中,分别是的中点,试用向量的方法:

求证:平面
与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,(I)求证:AC⊥BF;
(II)若二面角F—BD—A的大小为60°,求a的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分别是棱AD、AA、AB的中点。
(1)  证明:直线EE//平面FCC
求二面角B-FC-C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在空间四边形ABCD中,AB,BC,BD两两垂直,且AB=BC=2,E是AC的中点,异面直线AD和BE所成的角为,求BD的长度.(15分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.

(1)求证AC⊥平面DEF;
(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(3)求平面ABD与平面DEF所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.

(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在长方体中,的中点,的中点。
(1)证明:
(2)求与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.
(1)求证:AO、BO、CO两两垂直;

(2)求〈,〉.

查看答案和解析>>

同步练习册答案