已知直线l与椭圆x2+2y2=2交于P1、P2两点,线段P1P2的中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2的值等于______
__.
科目:高中数学 来源: 题型:
等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4
,则C的实轴长为( )
A.
B.2![]()
C.4 D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C1:
+
=1(0<b<2)的离心率为
,抛物线C2:x2=2py(p>0)的焦点是椭圆的顶点.
(1)求抛物线C2的方程;
(2)过点M(-1,0)的直线l与抛物线C2交于E,F两点,过E,F作抛物线C2的切线l1,l2,当l1⊥l2时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
设A(x1,y1),B(x2,y2)是椭圆
+
=1(a>b>0)上的两点
,且
m·n=0,椭圆离心率e=
,短轴长为2,O为坐标原点.
(1)求椭圆方程;
(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有 ( )
A.SG⊥△EFG所在平面 B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面 D.GD⊥△SEF所在平面
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com