精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=2sin({ωx-\frac{π}{6}})$的最小正周期为π,则函数y=f(x)在区间$[{0,\frac{π}{2}}]$上的最大值和最小值分别是(  )
A.2和-2B.2和0C.2和-1D.$\frac{{\sqrt{3}}}{2}$和$-\frac{{\sqrt{3}}}{2}$

分析 由条件求出ω的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数y=f(x)在区间$[{0,\frac{π}{2}}]$上的最大值和最小值.

解答 解:∵函数$f(x)=2sin({ωx-\frac{π}{6}})$的最小正周期为T=$\frac{2π}{ω}$=π,∴ω=2,
∴函数y=f(x)=2sin(2x-$\frac{π}{6}$).
∵x∈$[{0,\frac{π}{2}}]$,∴2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],∴2sin(2x-$\frac{π}{6}$)∈[-1,2],
故函数 f(x)的最大值为2,最小值为-1,
故选:C.

点评 本题主要考查正弦函数的周期性、正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知点P(x,y)的坐标满足方程:(a2-1)x2+(a2-1)y2-2(a2+1)x+(a2-1)=0(a>0).
(1)试讨论点P的轨迹C;
(2)当a=$\sqrt{2}$时,直线y=x+b与轨迹C交于两点M、N,若∠MON=90°,O为坐标原点,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.两圆$\left\{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}\right.$与$\left\{\begin{array}{l}{x=3cosθ}\\{y=3sinθ}\end{array}\right.$的位置关系是(  )
A.内切B.外切C.相离D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合$A=\{1,2014,\frac{1}{2014}\}$,B={y|y=log2014x,x∈A},则A∩B=(  )
A.$\{\frac{1}{2014}\}$B.{2014}C.{1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(0,-2),B(3,2)是函数f(x)图象上的两点,且f(x)是R上的增函数,则|f(x)|<2的解集为(  )
A.(1,4)B.(-1,2)C.(0,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数y=lg(1-x)的定义域为M,当x∈M时,求f(x)=2x+2-3×4x的最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过点(1,0)且与直线x=-1相切的圆的圆心轨迹是抛物线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正实数a,b满足a+b=9,则$\frac{1}{a}+\frac{4}{b}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)若x<0,求函数$f(x)=4x+\frac{3}{x}$的最大值及相应x的值;
(Ⅱ)已知x,y为正数,$\frac{1}{x}+\frac{3}{y}=1$,且3x+y≥m2+4m恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案