分析 由1-x>0,可得x<1,设t=2x(0<t<2),可得f(x)=4t-3t2=-3(t-$\frac{2}{3}$)2+$\frac{4}{3}$,运用二次函数的最值的求法,即可得到所求最大值.
解答 解:由1-x>0,解得x<1,
可得函数y=lg(1-x)的定义域M=(-∞,1),
由t=2x(0<t<2),
可得f(x)=4t-3t2=-3(t-$\frac{2}{3}$)2+$\frac{4}{3}$,
可得在t=$\frac{2}{3}$,即x=log2$\frac{2}{3}$处,取得最大值,且为$\frac{4}{3}$.
点评 本题考查函数的最值的求法,注意运用换元法转化为二次函数的最值,同时考查对数函数和指数函数的单调性的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈[0,+∞],使f(x0)>0 | B. | f(x)的图象过点(1,1) | ||
| C. | f(x)是增函数 | D. | ?x∈R,f(-x)+f(x)=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2和-2 | B. | 2和0 | C. | 2和-1 | D. | $\frac{{\sqrt{3}}}{2}$和$-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{25}$ | B. | $-\frac{8}{25}$ | C. | $\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com