精英家教网 > 高中数学 > 题目详情
12.已知f(x)=|x+2|+|x-1|.
(1)解不等式f(x)≥7;
(2)若关于x的不等式f(x)>2a2-a对任意的x∈R恒成立,求a的取值范围.

分析 (1)由条件利用绝对值的意义求得不等式f(x)≥7的解集.
(2)由条件利用绝对值三角不等式求得f(x)的最小值为3,再根据2a2-a<3 求得a的取值范围.

解答 解:(1)不等式f(x)≥7,即|x+2|+|x-1|≥7.
由于|x+2|+|x-1|表示数轴上的x对应点到-2、1对应点的距离之和,而-4和3对应点到-2、1对应点的距离之和正好等于7,
故f(x)≥5的解集是(-∞,-4]∪[3,+∞).
(2)因为|x+2|+|x-1|≥|x-1-(x+2)|=3,所以f(x)的最小值为3.
要使得关于x的不等式f(x)>2a2-a对任意的x∈R恒成立,只需2a2-a<3,
解得-1<a<$\frac{3}{2}$,故a的取值范围是(-1,$\frac{3}{2}$).

点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆的圆心为坐标原点,且经过点(-1,$\sqrt{3}$).
(1)求圆的方程;
(2)若直线l1:x-$\sqrt{3}$y+b=0与此圆有且只有一个公共点,求b的值;
(3)求直线l2:x-$\sqrt{3}y+2\sqrt{3}$=0被此圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若直线y=x+$\sqrt{6}$与椭圆x2+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0且m≠1)只有一个公共点,则该椭圆的长轴长为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=loga(2x+3)+2(a>0,a≠1),则函数y=f(-x)的图象必过定点(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若下列程序执行的结果是100,则输入的x的值是(  )
A.0B.100C.-100D.100或-100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=16x-2×4x+5,x∈[-1,2].
(1)设t=4x,x∈[-1,2],求t的最大值与最小值;
(2)求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=loga(3-ax)在区[0,2]是减函数,则a的取值范围是1$<a<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD是正方形,PA=AB=a,E、F分别是边AB、CD的中点.若直线EF被四棱锥的外接球截得的线段长为2$\sqrt{2}$,则该球的体积为4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=lg(x+1)的值域是(  )
A.(0,+∞)B.(-∞,+∞)C.(-∞,0)D.(0,1)

查看答案和解析>>

同步练习册答案