精英家教网 > 高中数学 > 题目详情
已知,用数学归纳法证明:n∈N*时,an<1.
【答案】分析:直接利用数学归纳法的证明步骤,n=1时验证不等式成立,假设n=k时不等式成立,然后证明n=k+1时,不等式也成立.
解答:解:利用数学归纳法证明.
①当n=1时,a1=<1;
②假设n=k时,不等式成立,即
那么n=k+1时,=<1.
这就是说,n=k+1时,不等式也成立.
所以,对于n∈N*时,an<1成立.
点评:本题是中档题,考查数列在不等式证明中的应用,考查数学归纳法的证明步骤,注意用上假设是证明问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知n为正偶数,用数学归纳法证明1-
1
2
+
1
3
-
1
4
+…+
1
n-1
-
1
n
=2(
1
n+2
+
1
n+4
+…+
1
2n
)
时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设再证n=
 
时等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n为正偶数,用数学归纳法证明1-
1
2
+
1
3
-
1
4
+…+
1
n-1
=2(
1
n+2
+
1
n+4
+…+
1
2n
)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证(  )
A、n=k+1时等式成立
B、n=k+2时等式成立
C、n=2k+2时等式成立
D、n=2(k+2)时等式成立

查看答案和解析>>

科目:高中数学 来源: 题型:

以下说法正确的是
③④
③④

①lg9•lg11>1.
②用数学归纳法证明“1+a+a2+…+an+1=
1-an+21-a
(n∈N*,a≠1)
”在验证n=1时,左边=1.
③已知f(x)是R上的增函数,a,b∈R,则f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0.
④用分析法证明不等式的思维是从要证的不等式出发,逐步寻找使它成立的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n为正偶数,用数学归纳法证明1-
1
2
+
1
3
-
1
4
+…+
1
n+1
=2(
1
n+2
+
1
n+4
+…+
1
2n
)
时,若已假设n=k(k≥2)为偶数)时命题为真,则还需要用归纳假设再证n=(  )时等式成立.

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省高二下学期学段考试数学理卷 题型:选择题

已知为正整数,用数学归纳法证明时,若已假设为偶数)真,则还需利用归纳假设再证(    )

A、时等式也成立   B、时等式也成立 

C、时等式也成立   D、时等式也成立

 

查看答案和解析>>

同步练习册答案