(本题满分12分)
如图,四棱锥P-ABCD的侧面PAD垂直于底面ABCD,∠ADC=∠BCD=
,PA=PD=AD=2BC=2,CD
,M在棱PC上,N是AD的中点,二面角M-BN-C为
.
(1)求
的值;
(2)求直线
与平面BMN所成角的大小.[来源:学科网
ZXXK]
(Ⅰ)作ME∥CD,ME∩PD=E.
∵∠ADC=∠BCD=90°,AD=
2BC=2,N是AD的中点,∴BN⊥AD,
又平面PAD⊥平面ABCD,∴BN⊥平面PAD,
∴BN⊥NE,∠DNE为二面角M-BN-C的平面角,∠DNE=30°.……………3分
∵PA=PD=AD,∴∠PDN=60°,∴∠DEN=90°,∴DE=DP,
∴CM=CP,故=3.…………………………………………………………6分
(Ⅱ)连结BE,由(Ⅰ)的解答可知PE⊥平面BMN,则∠PBE为直线PB与平面BMN所成的角.连结PN,则PN⊥平面ABCD,从而PN⊥BN,
∴PB===,…………………………………………9分
又PE=PD=,∴sin∠PBE==.
所以直线PB与平面MBN所成的角为arcsin.………………………………12分![]()
![]()
解法二:
(Ⅰ)建立如图所示的坐标系N—xyz,其中N(0,0,0),A(1,0,0),B(0,,0),C(-1,,0),D(-1,0,0),P(0,0,).
设=λ(λ>0),则M(,,),于是
=(0,,0),=(,,),………………………………3分
设n=(x,y,z)为面MBN的法向量,则·n=0,·n=0,
∴y=0,-λx+λy+z=0,取n=(,0,λ),
又m=(0
,0,1)为面BNC的法向量,由二面角M-BN-C为30°,得
|cosám,nñ|===cos30°=,解得λ=3,[来源:学|科|网]
故=3.……………………………………………………………………………6分
(Ⅱ)由(Ⅰ),n=(,0,3)为面MBN的法向量,……………………………8分
设直线PB与平面MBN所成的角为θ,由=(0,,-),得
sinθ=|\o(PB,\s\up5(→________==,
所以直线PB与平面MBN所成的角为arcsin.………………………………12分
解析
科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)
如图所示的几何体是由以正三角形
为底面的直棱柱被平面
所截而得.
,
为
的中点.
![]()
(1)当
时,求平面
与平面
的夹角的余弦值;
(2)当
为何值时,在棱
上存在点
,使
平面
?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题
(本题满分12分)如图,在长方体
中,已知上下两底面为正方形,且边长均为1;侧棱
,为
中点,
为
中点,
为
上一个动点.
![]()
(Ⅰ)确定
点的位置,使得
;
(Ⅱ)当
时,求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
![]()
⑴求异面直线PD与AE所成角的大小;
⑵求证:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题
(本题满分12分)
如图3,在圆锥
中,已知
的直径
的中点.
(I)证明:![]()
(II)求直线和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题
(本题满分12分)
如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com