精英家教网 > 高中数学 > 题目详情
16.已知$cos(α-\frac{π}{2})=\frac{3}{5}$且$α∈(\frac{π}{2},π)$,则cosα=-$\frac{4}{5}$,$tan(α-\frac{π}{4})$=-7.

分析 由条件利用诱导公式、同角三角函数的基本关系、两角差的正切公式,求得要求式子的值.

解答 解:∵已知$cos(α-\frac{π}{2})=\frac{3}{5}$=cos($\frac{π}{2}$-α)=sinα,且$α∈(\frac{π}{2},π)$,
则cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$.
再根据tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,可得$tan(α-\frac{π}{4})$=$\frac{tanα-1}{1+tanα}$=-7,
故答案为:-$\frac{4}{5}$;-7.

点评 本题主要考查诱导公式、同角三角函数的基本关系、两角差的正切公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,正方体棱长为4,M,P分别为A1B1,B1C1的中点,设点D,M,P三点的平面与棱CC1交于点N,求PM+PN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在几何体ABDCE中,AB=AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,AE=MC.
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求下列各式的值.
①a+a-1;   
②a2+a-2
(2)计算(2$\frac{7}{9}$)0+(0.1)-1+lg$\frac{1}{50}$-lg2+($\frac{1}{7}$)-1+log75的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某班有男生33人,女生11人,现按照分层抽样的方法建立一个4人的课外兴趣小组.
(Ⅰ)求课外兴趣小组中男、女同学的人数;
(Ⅱ)老师决定从这个课外兴趣小组中选出2名同学做某项实验,选取方法是先从小组里选出1名同学,该同学做完实验后,再从小组里剩下的同学中选出1名同学做实验,求选出的2名同学中有女同学的概率;
(Ⅲ)老师要求每位同学重复5次实验,实验结束后,第一位同学得到的实验数据为68,70,71,72,74,第二位同学得到的实验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x2+ax+b,(a,b∈R).
(Ⅰ)当b=$\frac{{a}^{2}}{4}$+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式;
(Ⅱ)若b=a+1且函数f(x)在[-1,1]上存在两个不同零点,试求实数a的取值范围.
(Ⅲ)若b=a+1且函数f(x)在[-1,1]上存在一个零点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数$z=\frac{1}{1+i}$,则z的共轭复数$\overline z$等于(  )
A.$\frac{1}{2}+\frac{i}{2}$B.$\frac{1}{2}-\frac{i}{2}$C.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A={x|-1<x<4},B={x|-5$<x<\frac{3}{2}$},C={x|x<2a},求:
(1)A∪B      
(2)A⊆C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若等差数列{an}中,${a_3}+a_4^{\;}+{a_5}=2$,a4+a5+a6=5,则a8+a9+a10=17.

查看答案和解析>>

同步练习册答案