精英家教网 > 高中数学 > 题目详情
某小卖部为了了解冰糕销售量y(箱)与气温x(℃)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如下表所示),且由表中数据算得线性回归方程x+中的=2,则预测当气温为25 ℃时,冰糕销量为________箱.
气温/℃
18
13
10
-1
冰糕/箱
64
38
34
24
70
由线性回归方程必过点(),且=2,得=20.
∴当x=25时,=70.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:
PM2.5日均浓度
0~35
35~75
75~115
115~150
150~250
>250
空气质量级别
一级
二级
三级
四级
五级
六级
空气质量类别


轻度污染
中度污染
重度污染
严重污染
 

某市2013年3月8日—4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校制定学校发展规划时,对现有教师进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:
学历
35岁以下
35至50岁
50岁以上
本科
80
30
20
研究生
x
20
y
(1)用分层抽样的方法在35至50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有l人的学历为研究生的概率;
(2)在该校教师中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取l人,此人的年龄为50岁以上的概率为,求x、y的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:,,,,分别加以统计,得到如图所示的频率分布直方图.


(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有的把握认为“生产能手与工人所在的年龄组有关”?

附表:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

从某年级学生中,随机抽取50人,其体重(单位:千克)的频数分布表如下:
分组(体重)
 



频数(人)
 
 
 
 
 
(1)根据频数分布表计算体重在的频率;
(2)用分层抽样的方法从这50人中抽取10人,其中体重在中共有几人?
(3)在(2)中抽出的体重在的人中,任取2人,求体重在中各有1人的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.样本频率分布表如下:
分组
频数
频率
[40,50)
2
0.04
[50,60)
3
0.06
[60,70)
14
0.28
[70,80)
15[]
0.30
[80,90)
A
B
[90,100]
4
0.08
合计
C
D
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某地每单位面积菜地年平均使用氮肥量x(kg)与每单位面积蔬菜年平均产量y(t)之间的关系有如下数据:
年份
1985
1986
1987
1988
1989
1990
1991
1992
x(kg)
70
74
80
78
85
92
90
95
y(t)
5.1
6.0
6.8
7.8
9.0
10.2
10.0
12.0
 
年份
1993
1994
1995
1996
1997
1998
1999
 
x(kg)
92
108
115
123
130
138
145
 
y(t)
11.5
11.0
11.8
12.2
12.5
12.8
13.0
 
(1)求x与y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求蔬菜产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积施肥150 kg时,每单位面积蔬菜的年平均产量.
(已知数据:=101,≈10.113 3,=161 125,=1 628.55,=16 076.8)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某考察团对全国10大城市进行职工人均平均工资x与居民人均消费y进行统计调查,y与x具有相关关系,线性回归方程=0.66x+1.562(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比约为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下所示:
 
又发作过心脏病
未发作过心脏病
合计
心脏搭桥手术
39
157
196
血管清障手术
29
167
196
合计
68
324
392
比较这两种手术对病人又发作心脏病的影响有没有差别.

查看答案和解析>>

同步练习册答案