精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-mx2-3x,x=3是f(x)的极值点,则f(x)在[1,m]的最大值与最小值的和是
 
考点:利用导数研究函数的极值
专题:计算题,导数的综合应用
分析:求f′(x)=3x2-2mx-3,则27-6m-3=0从而求出m=4,则f(x)在[1,3]上是减函数,在[3,4]上是增函数,从而求出最大值与最小值.
解答: 解:∵f′(x)=3x2-2mx-3,
又∵x=3是f(x)的极值点,
∴27-6m-3=0,
解得:m=4;
则f′(x)=3x2-8x-3=(3x+1)(x-3),
则f(x)在[1,3]上是减函数,在[3,4]上是增函数,
又∵f(1)=1-4-3=-6;
f(3)=-18,
f(4)=-12,
故f(x)在[1,m]的最大值与最小值的和是-24.
故答案为:-24.
点评:本题考查了导数的综合应用,极值时导数一定为0,同时考查了闭区间上的最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
x(x+4),x≥0
x(x-4),x<0
,若f(a)<f(8-a),则a的取值范围是(  )
A、(-∞,4)
B、(-4,4)
C、(-4,0)
D、(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
(sinx+cosx)-
1
2
|sinx-cosx|,x∈[0,2π],则f(x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长分别为AB=5,BC=4,AC=3,M 是AB边上的点,P是平面ABC外一点.给出下列四个命题:
①若PM丄平面ABC,且M是AB边中点,则有PA=PB=PC;
②若PC=5,PC丄平面ABC,则△PCM面积的最小值为
15
2

③若PB=5,PB⊥平面ABC,则三棱锥P-ABC的外接球体积为
125
2
6
π;
④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则三棱锥P-ABC的体积为2
23

⑤若PA=5,PA⊥平面ABC,则直线MP与平面PBC所成的最大角正切值为
5
3

其中正确命题的序号是
 
. (把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某校在一次考试中,5名学生的数学和地理成绩如表:
学生的编号i12345
数学成绩x8075706560
地理成绩y7066686462
(1)根据上表,利用最小二乘法,求出y关于x的线性回归方程
y
=
b
x+
a
(其中
b
=0.36);
(2)利用(1)中的线性回归方程,试估计数学90分的同学的地理成绩(四舍五入到整数);
(3)若从五人中选2人参加数学竞赛,其中1、2号不同时参加的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆(x-1)2+(y+2)2=4上的一点Q到点P(-
4
5
2
5
)的最短距离及这个点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,点D在线段BB1上,且BD=
1
3
BB1
,A1C∩AC1=E.
(Ⅰ)求证:直线DE与平面ABC不平行;
(Ⅱ)设平面ADC1与平面ABC所成的锐二面角为θ,若cosθ=
7
7
,求AA1的长;
(Ⅲ)在(Ⅱ)的条件下,设平面ADC1∩平面ABC=l,求直线l与DE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市交通规划中,拟在以点O为圆心,半径为50m的高架圆形车道外侧P处开一个出口,以与圆形道相切的方式,引申一条直道连接到距圆形道圆心O正北250
2
m的道路上C处(如图),以O为原点,OC为y轴建立如图所示的直角坐标系,求直道PC所在的直线方程,并计算出口P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列四个命题:
①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;、
②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
③若α⊥β,α∩β=a,b?β,a⊥b,则b⊥α;
④若a?α,b?α,l⊥a,l⊥b,则l⊥α.
其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案