精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,an+1=2an+1(n∈N*)
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=
n(an+1)2
,求数列{bn}的前n项和Sn
分析:(I)由数列{an}满足a1=1,an+1=2an+1(n∈N*),变形为an+1+1=2(an+1),即可证明数列{an+1}是等比数列,利用通项公式即可得出;
(II)利用“错位相减法”即可得出.
解答:(I)证明:∵数列{an}满足a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.
an+1=2×2n-1=2n
an=2n-1
(II)解:由(I)可知:bn=
n•2n
2
=n•2n-1
Sn=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1
2Sn=1×2+2×22+…+(n-1)•2n-1+n•2n
∴-Sn=1+2+22+…+2n-1-n•2n=
2n-1
2-1
-n•2n
=2n-1-n•2n=(1-n)•2n-1.
Sn=(n-1)•2n+1
点评:本题考查了变形转化为等比数列、等比数列的通项公式及其前n项和公式、“错位相减法”等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案