精英家教网 > 高中数学 > 题目详情
(2011•天津模拟)设
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0),a>0,b>0
,O为坐标原点,若A、B、C三点共线,则
1
a
+
2
b
的最小值是(  )
分析:根据题意首先求出
AB
AC
的坐标,再根据两个向量共线的性质得到2a+b=1,然后结合所求的式子的结构特征利用基本不等式求出其最小值.
解答:解:由题意可得:
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0),
所以
AB
=
OB
-
OA
=(a-1,1),
AC
=
OC
-
OA
=(-b-1,2).
又∵A、B、C三点共线,
AB
AC
,从而(a-1 )×2-1×(-b-1)=0,
∴可得2a+b=1.
又∵a>0,b>0
1
a
+
2
b
=(
1
a
+
2
b
)•(2a+b)=4+(
b
a
+
4a
b
)≥4+4=8
1
a
+
2
b
的最小值是8.
故选D.
点评:解决此类问题的关键是熟练掌握向量共线与点共线之间的关系,以及两个向量共线时坐标形式的运算公式,考查基本不等式的应用,此题得到2a+b=1是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•天津模拟)命题“函数y=f(x)(x∈M)是偶函数”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则y=f(x)的图象可由函数g(x)=sinx的图象(纵坐标不变)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)已知函数f(x)=sinωx-
3
cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于
π
2
,若将函数y=f(x)的图象向左平移
π
6
个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为(  )

查看答案和解析>>

同步练习册答案