精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点,则直线B1B和平面CDB1所成角的正切值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:以D为坐标原点,以CA,CB,CC1为X,Y,Z轴正方向,建立空间坐标系,令AC=BC=CC1=2,我们易求出几何体中各顶点的坐标,及而求出直线B1B的方向向量和平面CDB1的法向量,代入向量夹角公式,求出直线B1B和平面CDB1所成角的正弦值,再由同有三角函数关系,即可求出直线B1B和平面CDB1所成角的正切值.
解答:以D为坐标原点,以CA,CB,CC1为X,Y,Z轴正方向,建立空间坐标系,令AC=BC=CC1=2
则C(0,0,0),A(2,0,0),B(0,2,0),D(1,1,0),B1(0,2,2)
=(0,0,-2),=(1,1,0),=(0,2,2)
=(x,y,z)为平面CDB1的一个法向量
,即
令x=1则=(1,-1,1)
则cos==-
设直线B1B和平面CDB1所成角为θ
则sinθ=,cosθ=
则tanθ=
故选D
点评:本题考查的知识点是直线与平面所成的角,其中建立适当的空间直角坐标系,将空间线面夹角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案