精英家教网 > 高中数学 > 题目详情
设函数,,若函数g(x)=f(x)-h′(x)在[1,3]上恰有两个不同零点,则实数的m取值范围是   
【答案】分析:先求出函数g(x)的解析式,然后研究函数g(x)在[1,3]上的单调性,根据函数g(x)在[1,3]上恰有两个不同零点,建立不等关系 ,最后解之即可.
解答:解;
若g′(x)=0,则x=2
当x∈[1,2)时,g′(x)<0;
当x∈(2,3]时,g′(x)>0.
故g(x)在x∈[1,2)上递减,在x∈(2,3]上递增.

所以实数a的取值范围是:(2-2ln2,3-2ln3]
点评:本题主要考查了利用导数研究函数的极值,以及函数的零点等有关基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
a+1
x
 
(a>0)
,g(x)=4-x,已知满足f(x)=g(x)的x有且只有一个.
(Ⅰ)求a的值;
(Ⅱ)若f(x)+
m
x
>1
对一切x>0恒成立,求m的取值范围;
(Ⅲ)若函数h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域为[m,n](其中n>m>0),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区一模)设函数f(x)和x都是定义在集合
2
上的函数,对于任意的
2
x,都有x成立,称函数x与y在l上互为“l函数”.
(1)函数f(x)=2x与g(x)=sinx在M上互为“H函数”,求集合M;
(2)若函数f(x)=ax(a>0且a≠1)与g(x)=x+1在集合M上互为“x函数”,求证:a>1;
(3)函数m与m在集合M={x|x>-1且x≠2k-3,k∈N*}上互为“m函数”,当m时,m,且m在m上是偶函数,求函数m在集合M上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a满足0<a≤2,a≠1,设函数f (x)=
1
3
x3-
a+1
2
x2+ax.
(1)当a=2时,求f (x)的极小值;
(2)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.
求证:g(x)的极大值小于等于
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数数学公式,,若函数g(x)=f(x)-h′(x)在[1,3]上恰有两个不同零点,则实数的m取值范围是________.

查看答案和解析>>

同步练习册答案