精英家教网 > 高中数学 > 题目详情
[1-(n]=1,则b的取值范围是

A.b<1                                                     B.-b

C.b                                                          D.0<b

解析:由题意知||<1,b2<(1-b2.

解之得b.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),k(A)表示ai+aj(1≤i<j≤n)中所有不同值的个数.
(1)已知集合P={2,4,6,8},Q={2,4,8,16},分别求k(P)和k(Q);
(2)若集合A={2,4,8,…,2n},证明:k(A)=
n(n-1)2

(3)求k(A)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

xn=
1×2
+
2×3
+…+
n(n+1)
(n为正整数),
求证:不等式  
n(n+1)
2
<x n
(n+1)2
2
对一切正整数n恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的各项为正,且a1=a(0<a<1)
(1)若an+1=
an
1+an
,(n∈N*),0<an<1
,求an+1的取值范围.
(2)若an+1
an
1+an
,(n∈N*)
,求证:
an
a
1+(n-1)a

n
k=1
ak
k+1
<1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)数列{an}的前n项和Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,(n=1,2,…)
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=(n+1)•log3an+1,数列{
1
bn
}前n项和Tn.在(1)的条件下,证明不等式Tn<1;
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,在(1)的条件下,令cn=
nan-4
nan
(n=1,2,…),求数列{cn}的“积异号数”

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)若把1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an(n∈N*),则an=
2n+1-1
2n+1-1

查看答案和解析>>

同步练习册答案