如图,在直三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,AB⊥平面BB1C1C.
(1)求直线C1B与底面ABC所成角的正切值;
(2)在棱CC1(不包括端点C、C1)上确定一点E的位置,使EA⊥EB1(要求说明理由);
(3)在(2)的条件下,若AB=,求二面角A-EB1-A1的大小.
![]()
解:以B为坐标原点,BC、BB1、AB所在的直线分别为x、y、z轴建立如图所示的空间直角坐标系,则B(0,0,0),C1(1,2,0),B1(0,2,0).
![]()
(1)在直三棱柱ABC-A1B1C1中,平面ABC的一个法向量为
=(0,2,0),又
=(1,2,0),设BC1与平面ABC所成的角为θ,则sinθ=|cos〈
,
〉|=,
∴tanθ=2,即直线C1B与底面ABC所成角的正切值为2.………………………3分
(2)设E(1,y,0),A(0,0,z),则
=(-1,2-y,0),
=(-1,-y,z),∵EA⊥EB1,∴
·
=1-y(2-y)=0,∴y=1,即E(1,1,0),∴E为CC1的中点.
……………6分
(3)由题知A(0,0,),则
=(1,1,-),
=(1,-1,0),设平面AEB1的一个法向量为n=(x1,y1,z1),则
∴
令x1=1,则n=(1,1,)
∵
=(1,1,0),
∴
·
==0.
∴BE⊥B1E.又BE⊥A1B1,
∴BE⊥平面A1B1E.
∴平面A1B1E的一个法向量为BE=(1,1,0)
∴cos〈n,
〉==.
∴二面角A-EB1-A1的大小为45°………………………………………………10分
科目:高中数学 来源: 题型:
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
查看答案和解析>>
科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题
(本小题共l2分)
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]
P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
![]()
查看答案和解析>>
科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题
(本小题共l2分)
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
![]()
查看答案和解析>>
科目:高中数学 来源:四川省高考真题 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com