精英家教网 > 高中数学 > 题目详情

(08年泰安市模拟)(12分)已知四边形ABCD是等腰梯形,AB=3,DC=1,∠BAD=45°,DE⊥AB(如图1)。现将△ADE沿DE折起,使得AE⊥EB(如图2),连结AC,AB,设M是AB的中点。

   (I)求证:BC⊥平面AEC;

   (II)求二面角C―AB―E的正切值;

   (III)判断直线EM是否平行于平面ACD,并说明理由。

 

解析:证:(I)在图1中,过C作CF⊥EB,

∵DE⊥EB,∴四边形CDEF是矩形,

∵CD=1,∴EF=1。

∵四边形ABCD是等腰梯形,AB=3。

∴AE=BF=1。

∵∠BAD=45°,∴DE=CF=1。

连结CE,则CE=CB=

∵EB=2,∴∠BCE=90°。

则BC⊥CE。                                                 …………3分

在图2中,∵AE⊥EB,AE⊥ED,EB∩ED=E,

∴AE⊥平面BCDE。

∵BC平面BCDE,∴AE⊥BC。                                 …………5分

∵AE∩CE=E,∴BC⊥平面AEC。                                …………6分

   (II)∵AE⊥平面BCDE,CF平面BCDE。

∴AE⊥CF。

∴CF⊥平面ABE。

过C作CG⊥AB,连结FG,则∠CGF就是二面角C―AB―E的平面角。……6分

又CF=1,AE=1,CE=BC=

∴AC=

在Rt△ACB中,AB=

又AC?BC=AB?CG,∴CG=

∴FG=

∴二面角C―AB―E的正切值为                             …………8分

   (III)用反证法。

假设EM∥平面ACD。                                         

∵EB∥CD,CD平面ACD,EB平面ACD,

∴EB∥平面ACD。∵EB∩EM=E,∴面AEB∥面ACD                  …………10分

而A∈平面AEB,A∈平面ACD,

与平面AEB//平面ACD矛盾。

∵假设不成立。

∴EM与平面ACD不平行。                                      …………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年西安市第一中学五模理)(12分) 已知长度为的线段的两端点在抛物线上移动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.

(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;

(2)设通过最后三关后,能被录取的人数为,求随机变量的期望

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1a3a4成等比数列,则a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年潍坊市六模) (12分)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年滨州市质检三文)(12分)已知函数.

   (I)当m>0时,求函数的单调递增区间;

   (II)是否存在小于零的实数m,使得对任意的,都有,若存在,求m的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案