精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于F.求
EF
FC
+
AF
FD
的值.
分析:先过E作EG∥BC,交AD于G,再作DH∥BC交CE于H,由平行线分线段成比例定理的推论,再结合已知条件,可分别求出
EF
EC
AF
AD
的值,相加即可.
解答:精英家教网解:作EG∥BC交AD于G,则有
AE
EB
=
1
3
,即
AE
AB
=
1
4
,得
EG=
1
4
BD=
1
2
CD,
EF
FC
=
EG
CD
=
1
2

作DH∥AB交CE于H,则DH=
1
3
BE=AE,
AF
FD
=
AE
DH
=1,
EF
FC
+
AF
FD
=
1
2
+1=
3
2
点评:此题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等,解题时要注意比例式的变形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至
A′CD,使点A'与点B之间的距离A′B=
3

(1)求证:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求异面直线A′C与BD所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,
且AE=AF.
(1)证明:B,D,H,E四点共圆;
(2)证明:CE平分∠DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中,∠C=
π
2
.设∠CBA=θ,BC=a,它的内接正方形DEFG的一边EF在斜边AB上,D、G分别在AC、BC上.假设△ABC的面积为S,正方形DEFG的面积为T.
(1)用a,θ表示△ABC的面积S和正方形DEFG的面积T;
(2)设f(θ)=
T
S
,试求f(θ)的最大值P,并判断此时△ABC的形状;
(3)通过对此题的解答,我们是否可以作如下推断:若需要从一块直角三角形的材料上裁剪一整块正方形(不得拼接),则这块材料的最大利用率要视该直角三角形的具体形状而定,但最大利用率不会超过第(2)小题中的结论P.请分析此推断是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)如图,已知△ABC中,AB=
3
,∠C=30°,AD=2DC,∠BDA=60°,求△ABC的面积.

查看答案和解析>>

同步练习册答案