分析 在类比等差数列的性质推理等比数列的性质时,由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,可得结论.
解答 解:数列{an},(n∈N*)是等差数列,则有数列${b_n}=\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$(n∈N*)也是等差数列.
类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=$\root{n}{{{c_1}{c_2}{c_3}…{c_n}}}$时,数列{dn}也是等比数列.
故答案为:$\root{n}{{{c_1}{c_2}{c_3}…{c_n}}}$.
点评 本题主要考查了类比推理,找出两类事物之间的相似性或一致性,用一类事物的性质去推测另一类事物的性质,得出一个明确的命题,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 半径为R的球的内接六面体中,以正方体的体积为最大,最大值为2R3 | |
| B. | 半径为R的球的内接六面体中,以正方体的体积为最大,最大值为3R3 | |
| C. | 半径为R的球的内接六面体中,以正方体的体积为最大,最大值为$\frac{4\sqrt{3}}{9}$R3 | |
| D. | 半径为R的球的内接六面体中,以正方体的体积为最大,最大值为$\frac{8\sqrt{3}}{9}$R3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当型循环结构,-1 | B. | 当型循环结构,0 | ||
| C. | 直到型循环结构,0 | D. | 直到型循环结构,-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com