精英家教网 > 高中数学 > 题目详情
函数f(x)=x+
9
x
的单调递增区间是(  )
A、(-3,3)
B、(-3,+∞)
C、x2+2x+a>0,x∈[1,+∞)
D、(-∞,-3),(3,+∞)
分析:求出函数y的导函数y′,因为要求单调递增区间,令y′>0得到不等式求出x的范围即可.
解答:解:y′=1-
9
x2
=
x2-9
x2

∴令y′>0,得:
x<-3),或x>3,
∴函数f(x)=x+
9
x
的单调递增区间是(-∞,-3),(3,+∞)
故选D.
点评:考查学生掌握利用导数研究函数的单调性的能力.求单调递增区间的方法:先确定函数的定义域然后求出函数的导涵数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数的单调区间,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减,函数f(x)=x+
4
x
(x>0)
在区间
 
上递增;
(2)函数f(x)=x+
4
x
(x>0)
,当x=
 
时,y最小=
 

(3)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数f(x)=x+
4
x
,(x>0)在区间(0,2)上递减,则在
[2,+∞)
[2,+∞)
上递增;
(2)当x=
2
2
时,f(x)=x+
4
x
,(x>0)的最小值为
4
4

(3)试用定义证明f(x)=x+
4
x
,(x>0)在区间(0,2)上递减;
(4)函数f(x)=x+
4
x
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列表格,探究函数f(x)=x+
4
x
,x∈(0,+∞)
的性质,
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.
当x=
2
2
时,y最小=
4
4

(2)证明:函数f(x)=x+
4
x
在区间(0,2)递减.
(3)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)是偶函数,且f(x)=f(-x+4),当x∈[0,2]时,f(x)=1-x,则方程f(x)=
1
1-|x|
在区间[-8,8]上的解的个数为(  )

查看答案和解析>>

同步练习册答案