精英家教网 > 高中数学 > 题目详情

(2011•湖北)已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠﹣1).
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.

(1)
(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列的前项和为,且和1的等差中项,等差数列满足
(1)求数列,的通项公式;
(2)设,数列的前n项和为,若对一切恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足,数列满足
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,向量.
(1)求证数列为等差数列,并求通项公式;
(2)设,若对任意都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,设数列满足 
(1)求数列的前项和为
(2)若数列,若对一切正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在无穷数列中,,对于任意,都有. 设, 记使得成立的的最大值为.
(1)设数列为1,3,5,7,,写出的值;
(2)若为等比数列,且,求的值;
(3)若为等差数列,求出所有可能的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列前三项为,前项的和为
(1)求 ;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定正整数,若项数为的数列满足:对任意的,均有(其中),则称数列为“Γ数列”.
(1)判断数列是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:恒成立;
(3)设是公差为的无穷项等差数列,若对任意的正整数
均构成“Γ数列”,求的公差

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是首项为a,公差为d的等差数列是其前n项的和。记,其中c为实数。
(1)若,且成等比数列,证明:
(2)若是等差数列,证明:

查看答案和解析>>

同步练习册答案