精英家教网 > 高中数学 > 题目详情
若函数f(x)在定义域D内某区间I上是增函数,且
f(x)x
在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”,则实数b的值为
1
1
分析:由“弱增函数”的定义知h(x)在(0,1)上递增,
h(x)
x
在(0,1)上递减,分别根据二次函数、“对勾函数”的单调性求出b的取值范围,二者取交集即可求得b值.
解答:解:因为h(x)在(0,1]上是“弱增函数”,所以h(x)在(0,1)上递增,
h(x)
x
在(0,1)上递减.
(1)由h(x)在(0,1)上递增,得
b-1
2
≤0,解得b≤1;
(2)由
h(x)
x
=x+
b
x
-(b-1)在(0,1)上递减,得
①若b≤0,
h(x)
x
=x+
b
x
-(b-1)在(0,+∞)上递增,不合题意;
②若b>0,由
h(x)
x
=x+
b
x
-(b-1)在(0,1)上递减,得
b
≥1,解得b≥1,
综上,得b≥1,
由(1)(2),得b=1.
故答案为:1.
点评:本题考查函数的单调性问题,熟练掌握常见函数如:二次函数、“对勾函数”的单调性可以为我们迅速解决问题提供帮助.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f(x)=(f′(x))′,若f(x)<0在D上恒成立,则称f(x)在D上为凸函数.对于给出的四个函数:
①f(x)=sinx+cosx,②f(x)=lnx-2x,③f(x)=-x4+x3-x2+1,④f(x)=-xe-x
以上四个函数在(0,
π2
)
上是凸函数的是
①②③
①②③
(请把所有正确的序号均填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的奇函数,在(-∞,0)上为减函数,且f(2)=0,则使得f(x)<0的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设函数f(x)=(x-1)2+blnx.
(1)若f(x)在x=2时取得极小值,求b的值;
(2)若函数f(x)在定义城上是单调函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x-1)2+blnx.
(1)若f(x)在x=2时取得极小值,求b的值;
(2)若函数f(x)在定义城上是单调函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省七市州高三(下)4月联考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=(x-1)2+blnx.
(1)若f(x)在x=2时取得极小值,求b的值;
(2)若函数f(x)在定义城上是单调函数,求b的取值范围.

查看答案和解析>>

同步练习册答案