精英家教网 > 高中数学 > 题目详情
已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2
3

(I)求椭圆C的标准方程;
(Ⅱ)若直线AP的倾斜角为
4
,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由题意可设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),F(c,0).由题意知
1
2
•2a•b=2
3
a=2
,解得即可得出.
(II)以BD为直径的圆与直线PF相切.由题意可知,c=1,F(1,0),直线AP的方程为y=-x-2.则点D坐标为(2,-4),BD中点E的坐标为(2,-2),圆的半径r=2.直线AP的方程与椭圆的方程联立可得7x2+16x+4=0.可得点P的坐标.可得直线PF的方程为:4x-3y-4=0.利用点到直线的距离公式可得点E到直线PF的距离d.只要证明d=r.
解答: 解:(Ⅰ)由题意可设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),F(c,0).
由题意知
1
2
•2a•b=2
3
a=2
,解得b=
3

故椭圆C的方程为
x2
4
+
y2
3
=1

(Ⅱ)以BD为直径的圆与直线PF相切.
证明如下:由题意可知,c=1,F(1,0),直线AP的方程为y=-x-2.
则点D坐标为(2,-4),BD中点E的坐标为(2,-2),圆的半径r=2.
y=-x-2
x2
4
+
y2
3
=1
得7x2+16x+4=0.
设点P的坐标为(x0,y0),则
x0=-
2
7
y0=-
12
7

∵点F坐标为(1,0),直线PF的斜率为
4
3
,直线PF的方程为:4x-3y-4=0.
点E到直线PF的距离d=
|8+6-4|
5
=2.
∴d=r.
 故以BD为直径的圆与直线PF相切.
点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、直线与圆相切的判定方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin2002°sin2008°-cos6°
sin2002°cos2008°+sin6°
的值是(  )
A、-
1
tan28°
B、
1
tan28°
C、-tan28°
D、tan28°

查看答案和解析>>

科目:高中数学 来源: 题型:

若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过球O表面上一点A,引三条长度相等的弦AB、AC、AD,且两两夹角都为60°,若球半径为R,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an},各项均为正数的等比数列{bn},满足a1=1,b1=2,a4=b2,a8=b3 求数列{an}和{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β都是锐角,且sin(α+β)=2sinα,求证:α<β.(用反证法证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,M,N分别为四边形ABCD的对角线BD,AC中点,
AB
=
a
CD
=
b
,用
a
表示
b
表示
MN

查看答案和解析>>

科目:高中数学 来源: 题型:

与圆C1:(x+3)2+y2=1,圆C2:(x-3)2+y2=9同时外切的动圆圆心的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+y2=1的焦点为F1,F2,若点P在椭圆上,且满足|PO|2=|PF1|•|PF2|(其中O为坐标原点),则称点P为“★点”,那么该椭圆上“★点”的个数是
 

查看答案和解析>>

同步练习册答案