【题目】已知函数f(x)=|x﹣a|﹣|x﹣2|.
(1)当a=﹣3时,求不等式f(x)<2的解集;
(2)若x∈[1,2]时不等式f(x)<2成立,求实数a的取值范围.
【答案】(1)不等式的解集为{x|x<
};(2)实数a的取值范围是﹣2<a<4.
【解析】
(1)a=﹣3时,f(x)=|x+3|﹣|x﹣2|,零点分区间,去掉绝对值,分段解不等式即可;(2)原式等价于|x﹣a|<2+|x﹣2|成立,即2x﹣4<a<4,而y=2x﹣4在[1,2]上的最小值为﹣2,进而得到参数范围.
(1)函数f(x)=|x﹣a|﹣|x﹣2|,
当a=﹣3时,f(x)=|x+3|﹣|x﹣2|=
;
则x≤﹣3时,不等式f(x)<2化为﹣5<2,∴x≤﹣3;
﹣3<x<2时,不等式f(x)<2化为2x+1<2,∴﹣3<x<
;
x≥2时,不等式f(x)<2化为5<2,∴x∈;
综上,不等式的解集为{x|x<
};
(2)x∈[1,2]时不等式f(x)<2成立,
即|x﹣a|﹣|x﹣2|<2成立,
等价于|x﹣a|<2+|x﹣2|成立;
∴|x﹣a|<4﹣x,
∴x﹣4<x﹣a<4﹣x,
即2x﹣4<a<4;
又y=2x﹣4在[1,2]上的最小值为﹣2,
∴实数a的取值范围是﹣2<a<4.
科目:高中数学 来源: 题型:
【题目】已知函数
,
,在
处的切线方程为
.
(1)求
,
;
(2)若
,证明:
.
【答案】(1)
,
;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于
的方程组,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用导数研究其单调性可得
,
从而证明
.
试题解析:((1)由题意
,所以
,
又
,所以
,
若
,则
,与
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
当
时,
,
单调递减,且
;
当
时,
,
单调递增;且
,
所以
在
上当单调递减,在
上单调递增,且
,
故
,
故
.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量
(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来3年中,设
表示流量超过120的年数,求
的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
年入流量 |
|
|
|
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.已知随机变量
,若
.则![]()
B.已知分类变量
与
的随机变量
的观察值为
,则当
的值越大时,“
与
有关”的可信度越小.
C.在线性回归模型中,计算其相关指数
,则可以理解为:解析变量对预报变量的贡献率约为![]()
D.若对于变量
与
的
组统计数据的线性回归模型中,相关指数
.又知残差平方和为
.那么
.(注意:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积 |
|
|
|
|
|
管理时间 |
|
|
|
|
|
并调查了某村
名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 |
|
|
女性村民 |
|
求出相关系数
的大小,并判断管理时间
与土地使用面积
是否线性相关?
若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取
人,记取到不愿意参与管理的男性村民的人数为
,求
的分布列及数学期望.
参考公式:
,参考数据:
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1) 已知函数
,若
,则
_____.
(2)等差数列{an}的前n项和为Sn,若a2=2,a11-a4=7,则S13=________.
(3)若命题“x∈R,使得x2+(a﹣1)x+1<0”是真命题,则实数a的取值范围是______.
(4)在△ABC中,tanA+tanB+
=
tanA·tanB,且sinA·cosA=
,则此三角形为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四个小球,分别写有“五、校、联、考”四个字,从中任取一个小球,有放回抽取,直到取到“五”“校”二字就停止,用随机模拟的方法估计恰好在第三次停止的概率:利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“五、校、联、考”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下16组随机数,由此可以估计,恰好第三次就停止的概率为______
232 321 230 023 123 021 132 220
231 130 133 231 331 320 120 233
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com