精英家教网 > 高中数学 > 题目详情

已知椭圆C1数学公式+数学公式=1(a>b>0),的右焦点为F,上顶点为A,P为C1上任一点,圆心在y轴上的圆C2与斜率为-1的直线l切于点B(-数学公式,3-数学公式),且AF∥l.
(1)求圆的方程及椭圆的离心率.
(2)过P作圆C2的切线PE,PG,若数学公式数学公式的最小值为-数学公式,求椭圆的方程.

解:(1)由圆心在y轴上的圆C2与斜率为1的直线l切于点B(-),所以圆心在过B且垂直于l的直线y=x+3上,又圆心在y轴上,则圆心C2(0,3),
圆心到直线l:y=-x+3-的距离,所以所求圆C2方程为:x2+(y-3)2=1,又AF∥l,F(c,0),A(0,b),所以有,即b=c,椭圆的离心率为
(2)设∠EC2G=2a,则=cos2α=2cos2α-1,
在Rt△PC2E中,,由椭圆的几何性质有:
cosα=,所以有,因b>0,所以b=2,
所以椭圆的方程为
分析:(1)由圆心在y轴上的圆C2与斜率为1的直线l切于点B(-),所以圆心在过B且垂直于l的直线y=x+3上,又圆心在y轴上,则圆心C2(0,3),圆心到直线l:y=-x+3-的距离,由此能求出椭圆的离心率.
(2)设∠EC2G=2a,则=cos2α=2cos2α-1,在Rt△PC2E中,,由椭圆的几何性质有:,由此能求出椭圆的方程.
点评:本题考查椭圆的方程和椭圆的离心率的求法,解题时要认真审题,注意挖掘题设条件,合理运用椭圆性质,恰当进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1=1,抛物线C2:(y-m)2=2px(p>0),且C1C2的公共弦AB过椭圆C1的右焦点.

(1)当ABx轴时,求mp的值,并判断抛物线C2的焦点是否在直线AB上;

(2)若p=且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市慈溪中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

已知椭圆C1=1 (a>b>0)与双曲线C2:x2-=1 有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
A.a2=
B.a2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省本溪一中、庄河高中联考高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1+=1(a>b>0)的长轴长为4,离心率为,F1、F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ)(ⅰ)求椭圆C1的方程; (ⅱ)求动圆圆心C轨迹的方程;
(Ⅱ)在曲线上C有两点M、N,椭圆C1上有两点P、Q,满足MF2共线,共线,且=0,求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省长春十一高高二(下)期初数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山一中等六校联考高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1+=1(a>b>0)的离心率为,直线l:x-y+=0与椭圆C1相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直与椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)若A(x1,2),B(x2,y2),C(x,y)是C2上不同的点,且AB⊥BC,求实数y的取值范围.

查看答案和解析>>

同步练习册答案