精英家教网 > 高中数学 > 题目详情

已知定义在区间[-2,t](t>-2)上的函数f(x)=(x2-3x+3)ex

(Ⅰ)当t>1时,求函数y=f(x)的单调区间;

(Ⅱ)设m=f(-2),n=f(t).试证明:m<n;

(Ⅲ)设g(x)=f(x)+(x-2)ex,当x>1时试判断方程g(x)=x根的个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•卢湾区一模)已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
x2x+1

(1)求函数y=f(x)的最小值m(a);
(2)若对任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2-x)的图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2x3

(1)求函数y=f(x)的最小值m(a)及g(x)的值域;
(2)若对任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;
(2)求y=f(x)的解析式;
(3)若关于x的方程f(x)=-
9
10
有解,将方程所有的解的和记为M,结合(1)中函数图象,求M的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;
(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有的解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.

查看答案和解析>>

同步练习册答案