ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬ÇÒµãP£¨an£¬an+1£©£¨n¡ÊN*£©ÔÚÖ±Ïßx-y+1=0ÉÏ¡£
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôº¯Êý£¨n¡ÊN£¬ÇÒn¡Ý2£©£¬Çóº¯Êýf£¨n£©µÄ×îСֵ£»
£¨3£©Éèbn=£¬Sn±íʾÊýÁÐ{bn}µÄǰnÏîºÍ¡£ÊÔÎÊ£ºÊÇ·ñ´æÔÚ¹ØÓÚnµÄÕûʽg£¨n£©£¬Ê¹µÃS1+S2+S3+¡­+Sn-1=£¨Sn-1£©¡¤g£¨n£©¶ÔÓÚÒ»Çв»Ð¡ÓÚ2µÄ×ÔÈ»Êýnºã³ÉÁ¢£¿ Èô´æÔÚ£¬Ð´³ög£¨n£©µÄ½âÎöʽ£¬²¢¼ÓÒÔÖ¤Ã÷£»Èô²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ¡£

½â£º£¨1£©ÓɵãPÔÚ£¨an£¬an+1£©Ö±Ïßx-y+1=0ÉÏ£¬
¼´£¬ÇÒ£¬
ÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬
£¬Í¬ÑùÂú×㣬
ËùÒÔ£»
£¨2£©£¬
£¬
£¬
ËùÒÔf£¨n£©Êǵ¥µ÷µÝÔö£¬¹Êf£¨n£©µÄ×îСֵÊÇ£»
£¨3£©£¬
¿ÉµÃ£¬
£¬
£¬
¡­¡­
£¬
£¬
£¬n¡Ý2 £¬
£¬
¹Ê´æÔÚ¹ØÓÚnµÄÕûʽg£¨x£©=n£¬Ê¹µÃ¶ÔÓÚÒ»Çв»Ð¡ÓÚ2µÄ×ÔÈ»Êýnºã³ÉÁ¢¡£

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1-an=
1
3n+1
(n¡ÊN*)
£¬Ôò
lim
n¡ú¡Þ
an
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=
an
1+2an
£¬Ôò{an}µÄͨÏʽan=
1
2n-1
1
2n-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬a1+2a2+3a3+¡­+nan=
n+1
2
an+1(n¡ÊN*)
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{
2n
an
}
µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=
1
2
£¬Sn
ΪÊýÁеÄǰnÏîºÍ£¬ÇÒSnÓë
1
an
µÄÒ»¸öµÈ±ÈÖÐÏîΪn(n¡ÊN*
£©£¬Ôò
lim
n¡ú¡Þ
Sn
=
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬2nan+1=£¨n+1£©an£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ£¨¡¡¡¡£©
A¡¢
n
2n
B¡¢
n
2n-1
C¡¢
n
2n-1
D¡¢
n+1
2n

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸