精英家教网 > 高中数学 > 题目详情

(I)计算:0.25×数学公式
(II)已知定义在区间(-1,1)上的奇函数f(x)单调递增.解关于t的不等式f(t-1)+f(t)<0.

解:(I)0.25×=0.25×(-2)-4+3+2=0.5;
(II)∵f(t-1)+f(t)<0,
∴f(t)<-f(t-1)
∵函数是奇函数
∴f(t)<f(1-t)
∵定义在区间(-1,1)上的函数f(x)单调递增

∴0<t<
分析:(I)直接利用负指数、对数的运算性质计算,即可求得结论;
(II)先利用函数为奇函数,将不等式变形,再利用函数的单调性,化不等式为具体不等式,解之即可.
点评:本题考查函数单调性与奇偶性的结合,考查学生的计算能力,考查学生转化问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地区甲校高二年级有1100人,乙校高二年级有900人,为了统计两个学校高二年级在学业水平考试中的数学学科成绩,采用分层抽样的方法在两校共抽取了200名学生的数学成绩,如下表:(已知本次测试合格线是50分,两校合格率均为100%)
甲校高二年级数学成绩:
分组 [50,60) [60,70) [70,80) [80,90) [90,100]
频数 10 25 35 30 x
乙校高二年级数学成绩:
分组 [50,60) [60,70) [70,80) [80,90) [90,100]
频数 15 30 25 y 5
   (I)计算x,y的值,并分别估计以上两所学校数学成绩的平均分(精确到1分)
(II)若数学成绩不低于80分为优秀,低于80分为非优秀,根据以上统计数据写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异?”
甲校 乙校 总计
优秀
非优秀
总计
附:
P(K2≥k0 0.10 0.05 0.025 0.010 0.005
k0 2.706 3.841 5.024 6.635 7.879
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学由于求不出积分
e
1
lnxdx
的准确值,于是他采用“随机模拟方法”和利用“积分的几何意义”来近似计算积分
e
1
lnxdx
.他用计算机分别产生10个在[1,e]上的均匀随机数xi(1≤i≤10)和10个在[0,1]上的均匀随机数yi(1≤i≤10),其数据记录为如下表的前两行
x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22
y 0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10
lnx 0.92 0.01 0.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80
则依此表格中的数据,可得积分
e
1
lnxdx
的一个近似值为
3
5
(e-1)
3
5
(e-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(I)计算:0.25×(-
1
2
)-1-4÷(
5
-1)0-(
1
27
)-
1
3
+lg25+2lg2

(II)已知定义在区间(-1,1)上的奇函数f(x)单调递增.解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(I)
6
1
4
-(π-1)0-(3
3
8
)
1
3
+(
1
64
)-
2
3

(II)log2(47×25)+log26-log23

查看答案和解析>>

同步练习册答案