精英家教网 > 高中数学 > 题目详情
1.已知1,m,3成等差数列,则m的值为(  )
A.2B.-1C.-2D.3

分析 利用等差中项直接计算即可.

解答 解:∵1,m,3成等差数列,
∴2m=1+3=4,
即m=2,
故选:A.

点评 本题考查等差数列,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.复数$\frac{2+i}{2-i}$(i为虚数单位)的虚部为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)是(-∞,+∞)上的偶函数,对于x≥0都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=2x,则f(-2013)+f(2014)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果点P(sin2θ,cos2θ)位于第三象限,那么角θ 所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第二或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知关于x的方程x2+(k+2i)x+2+ki=0.
(1)有实根,求实数k及实根;
(2)有一根$\frac{1}{i}$-1,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的a的值为(  )
A.2B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)$(\sqrt{x}+\frac{1}{2x}{)^n}$的展开式中第5项和第6项的二项式系数最大,求展开式的常数项.
(2)(1-2x)2015=a0+a1x+a2x2+…+a2015x2015(x∈R)
①求a0+a1+a2+…+a2015的值.      
②求$\frac{a_1}{2}+\frac{a_2}{2^2}+…+\frac{{{a_{2015}}}}{{{2^{2015}}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设P(x,y)是角α终边上任意一点(记r=$\sqrt{{x^2}+{y^2}}$>0),写出下列三角比:sinα=$\frac{y}{r}$cotα=$\frac{x}{y}$;secα=$\frac{r}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(n)>0(n∈N*),f(2)=4,并且对于任意的n1,n2∈N*,f(n1+n2)=f(n1)f(n2)成立,猜想f(n)的表达式.

查看答案和解析>>

同步练习册答案