精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过点,且与椭圆 有相同的焦点.

(1)求椭圆的标准方程;

(2)若动直线与椭圆有且只有一个公共点,且与直线交于点,问:以线段为直径的圆是否经过一定点?若存在,求出定点的坐标;若不存在,请说明理由.

【答案】(1);(2)存在点.

【解析】试题分析:1)先求出椭圆的焦点为,则由题设有,从中解出可得椭圆的标准方程为(2)因为动直线与椭圆相切,故联立直线方程和椭圆方程后利用判别式为零得到,又,设,则对任意的恒成立,但,因此,从而也就是点符合题意

解析:1)椭圆的焦点为,设椭圆的标准方程为解得所以椭圆的标准方程为

2联立消去,得 所以,即

,则 ,即

假设存在定点满足题意,因为,则 ,所以

恒成立,故解得 所以存在点符合题意

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出函数如下表,则f〔g(x)〕的值域为( )

x

1

2

3

4

g(x)

1

1

3

3

x

1

2

3

4

f(x)

4

3

2

1

A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,直线,设圆的半径为,且圆心在直线上.

)若圆心的坐标为,过点作圆的切线,求切线的方程.

)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
已知函数f(x)=|x﹣2|﹣|x﹣5|.
(1)证明:﹣3≤f(x)≤3;
(2)求不等式f(x)≥x2﹣8x+15的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域是{x|x≠0},对定义域内的任意都有f(·)=f()+f(),且当x>1时,f(x)>0,f(2)=1.

(1)证明:(x)是偶函数;

(2)证明:(x)在(0,+∞)上是增函数;

(3)解不等式(2-1)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个几何体的平面展开图,其中四边形ABCD为正方形,△PDC, △PBC, △PAB, △PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为 ( )

A. 平面BCD⊥平面PAD B. 直线BE与直线AF是异面直线

C. 直线BE与直线CF共面 D. 面PAD与面PBC的交线与BC平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且与椭圆 有相同的焦点.

(1)求椭圆的标准方程;

(2)若动直线与椭圆有且只有一个公共点,且与直线交于点,问:以线段为直径的圆是否经过一定点?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10 米,记∠BHE=θ.

(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.

(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;

(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.

查看答案和解析>>

同步练习册答案