精英家教网 > 高中数学 > 题目详情
1.已知点(p,q)是平面直角坐标系xOy上一点,x1,x2是方程x2-px+q=0的两个实根.记φ(p,q)=max{|x1|,|x2|}(表示|x1|,|x2|中的最大值).过点A(2,1)作抛物线L:y=$\frac{1}{4}$x2的切线交y轴于点B,对线段AB上的任一点Q(p,q),求φ(p,q)的值.

分析 求导,写出过点A(2,1)的切线方程,求得点B的坐标,由新定义可得方程的两根为1和p-1,比较1与p-1,即可得到所求.

解答 解:y=$\frac{1}{4}$x2的导数为y′=$\frac{1}{2}$x,
kAB=y′|x=2=$\frac{1}{2}$×2=1,
直线AB的方程为y-1=x-2,即y=x-1,可得B(0,-1),
∴q=p-1,方程x2-px+q=0的判别式△=p2-4q=(p-2)2,两根为1和p-1,
而0≤p≤2,即有p-1≤1,
∴φ(p,q)=1.

点评 本题考查了利用导数研究抛物线的切线方程,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题形式是个新定义问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:a1=a2=1,且an2+an-1an+1=4an-1an(n∈N*,n≥2).
(I)令bn=$\frac{{a}_{n+1}}{{a}_{n}}$(n∈N*),求数列{bn}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若sinα=$\frac{k+1}{k-3}$,cosα=$\frac{k-1}{k-3}$,则$\frac{1}{tanα}$的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-1-1|.
(1)作出函数y=f(x)的图象;
(2)若a<c,且f(a)>f(c),求证:2a+2c<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{lgx,x≥\frac{3}{2}}\\{lg(3-x),x<\frac{3}{2}}\end{array}\right.$,若方程f(x)=k无实数根,则实数k的取值范围是k<$lg\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|$\frac{{x}^{2}}{2}$+y2=1},B={y|y=x2-1},则A∩B=(  )
A.[-1,$\sqrt{2}$]B.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)}
C.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),(0,1)}D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x,y为正实数,且x+2y=3,则$\sqrt{2x(y+\frac{1}{2})}$ 的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.cos(-2014π)的值为(  )
A.$\frac{1}{2}$B.1C.-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{2x+1}{x-1}$,其定义域是[-8,-4),则下列说法正确的是(  )
A.f(x)有最大值$\frac{5}{3}$,无最小值B.f(x)有最大值$\frac{5}{3}$,最小值$\frac{7}{5}$
C.f(x)有最大值$\frac{7}{5}$,无最小值D.f(x)有最大值2,最小值$\frac{7}{5}$

查看答案和解析>>

同步练习册答案