精英家教网 > 高中数学 > 题目详情
6.设集合A={x|$\frac{{x}^{2}}{2}$+y2=1},B={y|y=x2-1},则A∩B=(  )
A.[-1,$\sqrt{2}$]B.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)}
C.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),(0,1)}D.[-$\sqrt{2}$,$\sqrt{2}$]

分析 化简集合A与B,求出A∩B即可.

解答 解:∵集合A={x|$\frac{{x}^{2}}{2}$+y2=1}={x|-$\sqrt{2}$≤x≤$\sqrt{2}$}=[-$\sqrt{2}$,$\sqrt{2}$];
B={y|y=x2-1}={y|y≥-1}=[-1,+∞);
∴A∩B=[-1,$\sqrt{2}$].
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.用[x]表示不超过x的最大整数,例如[-3.5]=-4,[2.3]=2,设函数f(x)=x-[x],则下列结论中正确的序号是③④(要求写出所有正确结论的序号)
①函数f(x)是奇函数
②函数f(x)在实数集R上是增函数
③函数f(x)的值域是[0,1)
④方程f(x)=$\frac{1}{2}$有无数个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=x2-2ax+a.
(1)若f(0)=1,求函数f(x)在区间[-1,2]上的最大值及最小值;
(2)若函数f(x)在区间(-∞,1)上有最小值,试判断函数g(x)=$\frac{f(x)}{x}$在区间(1,+∞)上的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知α∈(π,$\frac{3π}{2}$),且sinα=-$\frac{5}{13}$,则cosα=$-\frac{12}{13}$,tanα=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点(p,q)是平面直角坐标系xOy上一点,x1,x2是方程x2-px+q=0的两个实根.记φ(p,q)=max{|x1|,|x2|}(表示|x1|,|x2|中的最大值).过点A(2,1)作抛物线L:y=$\frac{1}{4}$x2的切线交y轴于点B,对线段AB上的任一点Q(p,q),求φ(p,q)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.比较两数log${\;}_{\frac{1}{4}}$$\frac{8}{7}$,log${\;}_{\frac{1}{5}}$$\frac{6}{5}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=log${\;}_{\frac{1}{2}}$(3x+1)的值域是(  )
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2-(2a+1)x+lnx,a∈R.
(Ⅰ) 当a=1时,求f(x)的单调区间和极值;
(Ⅱ) 若关于x的方程f(x)=2ax2-2(a+1)x恰有两个不等的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式ex≥kx对任意实数x恒成立,则实数k的最大值为e.

查看答案和解析>>

同步练习册答案