(本小题12分)已知函数
(1)若函数的值域为,求实数的取值范围;
(2)当时,函数恒有意义,求实数的取值范围。
(1);(2)
【解析】
试题分析:(1)对数函数的值域为R,意味着真数可以取遍一切正实数,故内层二次函数应与x轴有交点,即△≥0,解得a的范围;
(2)函数f(x)恒有意义,即真数大于零恒成立,利用参变分离法解决此恒成立问题即可得a的取值范围
解:(1)令,由题设知需取遍内任意值,所以解得 ,由于所以
(2)对一切恒成立且
即对一切恒成立 ,,当时,取得最小值为,所以
考点:本题主要考查了对数复合函数的定义域和值域,已知函数的值域求参数的范围,已知函数的定义域求参数范围,转化化归的思想方法。
点评:解决该试题的关键是能将不等式的恒成立问题,转换为函数的最值问题,运用分离参数 三四箱来得到参数a的取值范围。
科目:高中数学 来源: 题型:
(本小题12分)已知,,直线与函数、的k*s#5^u图象都相切,且与函数的k*s#5^u图象的k*s#5^u切点的k*s#5^u横坐标为.
(Ⅰ)求直线的k*s#5^u方程及的k*s#5^u值;
(Ⅱ)若(其中是的k*s#5^u导函数),求函数的k*s#5^u最大值;
(Ⅲ)当时,求证:.
查看答案和解析>>
科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题
(本小题12分)已知等比数列中,。
(1)求数列的通项公式;
(2)设等差数列中,,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源:2011云南省潞西市高二上学期期末考试数学试卷 题型:解答题
(本小题12分)
已知顶点在原点,焦点在轴上的抛物线与直线交于P、Q两点,|PQ|=,求抛物线的方程
查看答案和解析>>
科目:高中数学 来源:2010年浙江省杭州市七校高二上学期期中考试数学文卷 题型:解答题
(本小题12分)
已知圆C:;
(1)若直线过且与圆C相切,求直线的方程.
(2)是否存在斜率为1直线,使直线被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求
出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2012届山东省兖州市高二下学期期末考试数学(文) 题型:解答题
(本小题12分)已知函数
(1) 求这个函数的导数;
(2) 求这个函数的图像在点处的切线方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com