精英家教网 > 高中数学 > 题目详情
在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图).
精英家教网

试问三角形数的一般表达式为(  )
A、n
B、
1
2
n(n+1)
C、n2-1
D、
1
2
n(n-1)
分析:通过观察前几个图形中顶点的个数得,每一个图形中的顶点的个数都可以看成是一个等差数列的前几项的和,再利用等差数列的求和公式即可解决问题.
解答:解:从斜的方向看,根据规律性知:
由1+2+3+…+n
=
1
2
n(n+1)可得.
故选:B
点评:本题主要考查了归纳推理,以及数列递推式,属于基础题.所谓归纳推理,就是从个别性知识推出一般性结论的推理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…,这些数叫做三角形数,其通项为
n(n+1)
2
,前n项和为sn=
n(n+1)(n+2)
6
,如下图所示,有一列三角形数表,其位于三角形的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,依次记各三角形数表中的所有数之和为an,则a1=
0+2+6
4
=
2(1+3)
4
=2,a2=
0+3+9+18
9
=
3(1+3+6)
9
=
10
3
精英家教网
(1)求a3,a4,并写出an的表达式;
(2)令bn=
an
an+1
+
an+1
an
,证明2n<b1+b2+b3+…+bn<2n+2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为(  )
精英家教网
A、n
B、
n(n+1)
2
C、n2-1
D、
n(n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在古希腊,毕达哥拉斯把1,3,6,10,15,21,28,…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图).

试问三角形数的一般表达式为(    )

A.n              B.           C.n2-1           D.

查看答案和解析>>

科目:高中数学 来源:2014届陕西省渭南市高二下期末考试文科数学卷(解析版) 题型:选择题

在古希腊,毕达哥拉斯学派把1,3,6,10,15,……这些数叫做三角形数,因为这些数目的石子可以排成一个正三角形(如下图)则第八个三角形数是  (   )

A.35               B.36               C.37               D.38

 

查看答案和解析>>

同步练习册答案