精英家教网 > 高中数学 > 题目详情

关于xy,有如下数据

x

2

4

5

6

8

y

30

40

60

50

70

有如下的两个模型:①=6.5x+17.5,②=7x+17.通过残差分析发现第①个线性模型比第②个拟合效果好.则R________RQ1________Q2.

(用大于,小于号填空,RQ分别是相关指数和残差平方和)

 

【答案】

> <

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了对学生的数理(数学与物理)学习能力进行分析,从10000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:
等级得分 (0,1] (1,2] (2,3] (3,4] (4,5] (5,6]
人数 3 17 30 30 17 3
(Ⅰ)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值(例如区间(1,2]的中点值为1.5)作为代表:
(ⅰ)据此,计算这100名学生数理学习能力等级分数的期望μ及标准差σ(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,估计该市这10000名学生中数理学习能力等级在(1.9,4.1)范围内的人数.
(Ⅲ)从这10000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:

(ⅰ)请画出右上表数据的散点图;
(ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y
=bx+a
(附参考数据:
129
≈11.4

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
2
x
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
1
16
a=
2
2
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源:2007年上海市徐汇区零陵中学高三3月综合练习数学试卷(五)(解析版) 题型:解答题

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线上存在两个不同点关于直线y=x对称,求出其坐标;若曲线(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间上单调递减,在区间上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源:2011年海南省海口市高考数学调研试卷(理科)(解析版) 题型:解答题

某市为了对学生的数理(数学与物理)学习能力进行分析,从10000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:
等级得分(0,1](1,2](2,3](3,4](4,5](5,6]
人数3173030173
(Ⅰ)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值(例如区间(1,2]的中点值为1.5)作为代表:
(ⅰ)据此,计算这100名学生数理学习能力等级分数的期望μ及标准差σ(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,估计该市这10000名学生中数理学习能力等级在(1.9,4.1)范围内的人数.
(Ⅲ)从这10000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:

(ⅰ)请画出右上表数据的散点图;
(ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程(附参考数据:

查看答案和解析>>

同步练习册答案