【题目】已知函数![]()
(1)当
时,求
的单调区间;
(2)令
,区间
,
为自然对数的底数。
(ⅰ)若函数
在区间
上有两个极值,求实数
的取值范围;
(ⅱ)设函数
在区间
上的两个极值分别为
和
,
求证:
.
【答案】(1)增区间
,减区间
,(2)详见解析
【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数
在区间D上有两个极值,等价于
在
上有两个不同的零点,令
,得
,通过求导分析得
的范围为
;(ⅱ)
,得
,由分式恒等变换得
,得
,要证明
,只需证
,即证
,
令
,
,通过求导得到
恒成立,得证。
试题解析:
(1)当
时,
,
所以
若
,则
所以的单调区增区间为
若
则
所以的单调区增区间为![]()
(2)(ⅰ)因为
,
所以
,
,
若函数
在区间D上有两个极值,等价于
在
上有两个不同的零点,
令
,得
,
设
,令
|
|
|
|
|
|
| 大于0 | 0 | 小于0 | ||
| 0 | 增 |
| 减 |
|
所以
的范围为
(ⅱ)由(ⅰ)知,若函数
在区间D上有两个极值分别为
和
,不妨设
,则
,
所以
即
,
要证
,只需证
,即证
,
令
,即证
,即证
,
令
,因为
,
所以
在
上单调增,
,所以
,
即
所以
,得证。
科目:高中数学 来源: 题型:
【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函数f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx>
﹣
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C为三个锐角,且A+B+C=π,若向量
=(2sinA﹣2,cosA+sinA)与向量
=(cosA﹣sinA,1+sinA)是共线向量. (Ⅰ)求角A;
(Ⅱ)求函数y=2sin2B+cos
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义平面向量之间的一种运算“⊙”如下:对任意的
,令
,下面说法错误的是( )
A.若
与
共线,则
⊙
=0
B.
⊙
=
⊙ ![]()
C.对任意的λ∈R,有
⊙
=
⊙
)
D.(
⊙
)2+(
)2=|
|2|
|2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点. ![]()
(1)证明:BE∥平面ADP;
(2)求直线BE与平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.![]()
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=
,三棱锥P﹣ABD的体积V=
,求A到平面PBC的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com