精英家教网 > 高中数学 > 题目详情

如图,是半圆的直径,是半圆上除外的一个动点,垂直于半圆所在的平面,

⑴证明:平面平面

⑵当三棱锥体积最大时,求二面角的余弦值.

 

【答案】

(1)要证明平面平面,需要通过其判定定理来得到,先证明平面,进而得到。

(2)

【解析】

试题分析:(Ⅰ)证明:因为是直径,所以            1分,

因为平面,所以                     2分,

因为,所以平面                 3分

因为,所以是平行四边形,,所以平面                                               4分,

因为平面,所以平面平面           5分

(Ⅱ)依题意,             6分,

由(Ⅰ)知

,当且仅当时等号成立                    8分

如图所示,建立空间直角坐标系,则,则             9分

设面的法向量为,即,                  10分

设面的法向量为,即,                              12分

可以判断与二面角的平面角互补

二面角的余弦值为。                    13分

考点:面面垂直和二面角的平面角的求解

点评:主要是考查了面面垂直和二面角的平面角的求解,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年北京市西城区高三二模理科数学试卷(解析版) 题型:填空题

如图,是半圆的直径,的延长线上,与半圆相切于点.若,则______.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西西安高三第十二次适应性训练文数学卷(解析版) 题型:填空题

如图,是半圆的直径,点在半圆上,,垂足为,且,设,则的值为 _________;

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学文卷 题型:填空题

(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算第一题的得分.

(坐标系与参数方程)在极坐标系中,是曲线上任意两点,则线段长度的最大值为         

(几何证明选讲)如图,是半圆的直径,是半圆上异于的点,,垂足为,已知,则       

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省中山市高三第一次月考数学理卷 题型:填空题

(二)选做题(14~15题,考生只能从中选做一题)

几何证明选讲选做题)如图5,是半圆的直径,点

半圆上,,垂足为,且,设,

的值为        .

 

查看答案和解析>>

同步练习册答案