精英家教网 > 高中数学 > 题目详情

【题目】已知如图所示,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCDEF分别为PC的三等分点.

1)证明:AF∥平面EBD

2)已知AP=AD=1AB=2,求二面角E-BD-A的余弦值.

【答案】(1)见解析;(2)

【解析】

1)连接AC交于BDO,连接EO,由EF分别为PC的三等分点,得到AFEO,利用线面平行的判定定理,即可证得AF∥平面EBD

2)以A为原点,ADABAP的分别为xyz轴方向建立空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.

1)连接AC交于BDO,连接EO.因为ABCD为矩形,

所以OAC的中点.又EF分别为PC的三等分点,

ECF的中点,所以AFEO

因为EO平面BDEAF平面BDE,所以AF∥平面EBD

2)以A为原点,ADABAP的分别为xyz轴方向建立空间直角坐标系,

如图所示由条件可得D100),B020),C120),P001),

,∴

为平面ABD的一个法向量,

设面BDE的一个法向量为,则,即

y=1,则x=2z=-2,所以

所以二面角D-AE-C的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:

1)求观众评分的平均数?

2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?

3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用表示评分为10分的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆一中将要举行校园歌手大赛,现有33女参加,需要安排他们的出场顺序.(结果用数字作答

1)如果3个女生都不相邻,那么有多少种不同的出场顺序?

2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序?

3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0),椭圆C上的点到焦点距离的最大值为9,最小值为1

1)求椭圆C的标准方程;

2)求椭圆C上的点到直线l4x5y+400的最小距离?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ex-mx+1+1mR).

1)若函数fx)的极小值为1,求实数m的值;

2)当x≥0时,不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816其中第一项是,接下来的两项是,再接下来的三项是,依此类推那么该数列的前50项和为  

A. 1044 B. 1024 C. 1045 D. 1025

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD是菱形,BD2

1)若点EF分别为线段PDBC上的中点,求证:EF∥平面PAB

2)若平面PBD⊥平面ABCD,且PDPBPDPB,求平面PAB与平面PBC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点在抛物线 上,直线 与抛物线交于 两点,且直线 的斜率之和为-1.

(1)求的值;

(2)若,设直线轴交于点,延长与抛物线交于点,抛物线在点处的切线为,记直线 轴围成的三角形面积为,求的最小值.

查看答案和解析>>

同步练习册答案