精英家教网 > 高中数学 > 题目详情
设f(x)=ax3+bx+c(a≠0)是奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12,
(1)求a,b,c的值;        
(2)求函数f(x)在[-1,3]上的最值.
分析:(1)由f(x)为奇函数,推导出c=0.由f′(x)=3ax2+b的最小值为-12,推导出b=-12.由直线x-6y-7=0的斜率为
1
6
,推导出a=2.
(2)由(1)知f(x)=2x3-12x,从而得到f′(x)=6x2-12,由此能求出f(x)在[-1,3]上的最值.
解答:解:(1)∵f(x)为奇函数,
∴f(-x)=-f(x),即-ax3-bx+c=-ax3-bx-c,∴c=0.
∵f′(x)=3ax2+b的最小值为-12,∴b=-12.
又直线x-6y-7=0的斜率为
1
6

因此f′(1)=3a+b=-6,∴a=2,b=-12,c=0.
(2)由(1)知f(x)=2x3-12x,
∴f′(x)=6x2-12=6(x+
2
)(x-
2
),
列表如下:
x (-∞,-
2
-
2
(-
2
2
2
2
,+∞)
f′(x) + 0 - 0 +
f(x) Z 极大 极小
所以函数f(x)的单调增区间是(-∞,-
2
)和(
2
,+∞).
∵f(-1)=10,f(
2
)=-8
2
,f(3)=18,
∴f(x)在[-1,3]上的最大值是f(3)=18,最小值是f(
2
)=-8
2
点评:本题考查函数的解析式的求法,考查函数在闭区间上的最值的求法,解题时要认真审题,仔细解答,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=ax3+bx2+cx+d(a≠0)
(Ⅰ)f(x)的图象关于原点对称,当x=
12
时,f(x)的极小值为-1,求f(x)的解析式.
(Ⅱ)若a=b=d=1,f(x)是R上的单调函数,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+bx2+cx+d,f′(x)为其导数,如图是y=x•f′(x)图象的一部分,则f(x)的极大值与极小值分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+bx2+4x,其导函数y=f′(x)的图象经过点(
23
,0)
,(2,0),
(1)求函数f(x)的解析式和极值;
(2)对x∈[0,3]都有f(x)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f′(x)的图象开口向下且经过点(-2,0),(
23
,0)

(I)求f(x)的解析式;
(II)方程f(x)+p=0有唯一实数解,求实数P的取值范围.
(II)若对x∈[-3,3]都有f(x)≥m2-14m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案